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Abstract 

Computer games are expected to get evermore richer and detailed with each new 

generation of game consoles. Development of content for these game worlds is 

increasingly time consuming and, thus, would benefit from more effective tools. However, 

game level designers still work in almost the same way as five or ten years ago, with tools 

that are typically crude and inflexible. Therefore, investigating ways to improve the 

workflow and technology available to a level designer is both very necessary and 

promising. This dissertation investigates techniques to support the creative process of 

terrain design, which would improve both speed and quality. This research is limited to 

the most common type of geometry used for large open terrains, called heightfields, 

defined by horizontal regularly-spaced grids of height samples. To improve results, the 

applicability of several ideas from other design applications is discussed and several new 

extensions to existing procedural terrain generation algorithms are given. A 

comprehensive presentation of underlying theories and related work in these fields is 

provided. To improve the speed of terrain tools, ideas are explored that use today's 

powerful graphics cards not only to render 3D terrain, but also to perform actual terrain 

manipulations. These ideas have been incorporated into a custom testbed editor, together 

with a number of complex tools that use this new pipeline to their advantage. Details and 

results of this pipeline and the implemented tools are given. By executing the terrain 

manipulating algorithms on the graphics card instead of on the CPU, a noticeable 

speedup is achieved in practice, allowing for better interactive editing. To this purpose, 

an existing terrain rendering technique has been implemented in the testbed and further 

optimized for the specific demands of terrain editing. It is concluded that the proposed 

combination of common and novel heightfield editing techniques represents a valuable 

step towards overcoming the limitations of current terrain editing applications, by 

simultaneously improving quality, speed and user control. 

 

KEYWORDS AND PHRASES: computer graphics, heightfields, terrain modeling, 

procedural modeling, fractals, erosion, terrain rendering, GPGPU. 
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1 Introduction 

Ever since the early days of computer graphics (CG), research has been conducted on 

modeling and rendering three-dimensional (3D) virtual environments. For a few decades 

or so, practical applications of this research were limited to offline movie production. 

Nowadays, even desktop computers have enough processing power to render large virtual 

environments at interactive or even real-time speeds. Consequently, applications like 

Virtual Reality training simulations and 3D computer games have become feasible. 

 

 
 

Figure 1-1   Screenshot from Wolfenstein 3D  
(id Software, 1992) 

 
 

Figure 1-2   Screenshot from Gears of War  
(Microsoft Game Studios, 2006)  

  

With the ever increasing processing power of computers, it is possible to show more 

and more complex virtual worlds to the user at real-time speeds. For example, cutting-

edge 3D shooting games went from looking like Figure 1-1 to Figure 1-2 in less than 

fifteen years. From the point of view of a ‘gamer’, this increased level of detail adds to the 

realism and immersiveness of these virtual 3D worlds. From the designer’s perspective, 

using this increased processing power can add to the artistic freedom and can give the 

product a cutting-edge look. However, this graphical complexity comes at a cost. Creating 

more detail is generally laborious and is, consequently, expensive [TATA05].  

 

This dissertation focuses on one aspect of designing content for virtual environments: 

outdoor terrain. More specifically, it explores and examines common and novel ideas and 

techniques that would be helpful in the process of designing outdoor terrain for 3D 

computer games and offers several insights into, details of and solutions to the problems 

faced.  



Effective GPU-based synthesis and editing of realistic heightfields – G.J.P. de Carpentier 2 

1.1 Applications 

Realistically modeled terrain is part of all games that exhibit 3D outdoor areas. These 

terrain models typically are both functional and esthetic. Examples of functional terrain 

in games are natural barriers that balance gameplay by tweaking distances between key 

points on a map, and hinting at or enforcing an intended path by specific soil types and 

undergrowth, mountains, gores, etc. Examples of more esthetic choices are the exact 

shapes of rock formations, the placing of plants and trees and use of color. A great deal of 

effort is required to create terrain that is functional, pleasing, realistic and complex at 

the same time. Having tools, as described in this dissertation, to create terrains more 

easily empowers level designers to create, experiment and tweak both gameplay and 

esthetics in less time.  

 

The work discussed in this dissertation is primarily targeted at supporting typical 

users of terrain tools for games, namely experienced and creative level designers. 

Therefore, some knowledge of and experience in both 2D and 3D tools like procedural 

tools, level editors and image editing tools (e.g. Adobe Photoshop) is assumed. This allows 

common controls, ideas, common workflows and user interface metaphors to be further 

built upon. 

 

During research, user experimentation led to the discovery of an unintended but 

valuable secondary application. A system that speeds up the process of creating specific 

types of terrain can not only support game level designers during the production phase, it 

can also aid in the creation of concept art in the earlier phases of game development. For 

example, a screenshot taken from a selected point on or above the terrain might form the 

basis for a concept art drawing, which can then be edited and augmented with more 

traditional 2D image tools. Whenever this creation and rendering of 3D terrains can be 

done in less time than drawing these terrains in 2D by hand, productivity is increased. 
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1.2 Problem Statement 

Current tools that are specifically available for the creation of outdoor terrain are 

typically found to be crude and inflexible. This dissertation explores and evaluates 

techniques to aid in the need for efficient and realistic modeling of outdoor terrain by 

automating and speeding up tedious and difficult work as much as possible, and increase 

the creative potential of its users by offering a range of different techniques.  

 

Commonly available, lesser-known and novel techniques for the modeling of terrains 

for use in computer games are described and evaluated in this dissertation for their use 

in interactive design. These techniques are investigated from a technological point of 

view and are assessed based on their effectiveness as an aid to the level designer. Also, 

ideas will be sought after to improve the workflow of a terrain editor’s user. 

 

As terrain models can consist of millions of bytes of data, it is important to offer 

techniques that are memory efficient. Also, it is important to be time efficient, as editing 

is typically an iterative process of evaluation and tweaking, thus requiring tools that 

work at interactive or even real-time speeds to minimize overhead during design. As 

modern PCs are able to execute more and more code in parallel (e.g. multi-core CPUs and 

many-core GPUs), trying to run terrain editing operations in parallel is important to get 

the most out of the hardware. This will be one of the focal points of this dissertation. 

 

Level designers are assumed to use a modern PC with an above-average, reasonably 

cutting-edge processor and graphics card, as this affects the flexibility and speed of the 

hardware. No specific hardware vendor is assumed for this research. 

 

The research has been conducted independently from existing tools or game engines, 

although extending an existing tool would probably have resulted in a more integrated 

solution. However, as there was no one preferred tool or engine available during this 

research, a more general and independent approach has been chosen. As there was no 

code base to start with, an editor had to be developed as part of the research that would 

function as a testbed for this research, including a terrain renderer. As the render 

algorithm affects the internally used formats, memory requirements and preprocessing 
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time, different options from literature will be described in this dissertation as well, and 

the algorithm that has been implemented in the testbed will be explained in detail. 

1.3 Research Questions 

This dissertation is focused around exploring, suggesting and evaluating answers and 

solutions to the following central question: 

 

• What are the main bottlenecks in terrain design for current computer gaming 

applications and how can these bottlenecks be alleviated? 

 

During analysis of this question, the following additional, more specific research 

questions were found to be relevant: 

 

• How could the workflow be improved? 

 

• What well-known and lesser-known tools and techniques have been or could 

be used as tools in an offered tool set? 

 

• How could the speed of the sculpting tools be combined with the complexity 

and realism of more advanced, but slower and less controllable tools? 

 

• How can the above be achieved best using (only) the  hardware capabilities of 

today’s PCs? 

 

Some of these questions will be covered by in-depth discussion of the problems and 

ideas to improve the situation. Other questions (namely the last two) are less easy to 

evaluate from theory as they are concerned with performance in practice and are 

therefore tried out in the custom testbed. As this proved to be rather involved, the body of 

some of the presented chapters will be quite technical. 
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1.4 Dissertation Overview 

The dissertation is organized as follows. After the motivation of this work is explained 

in Chapter 2, both general and specific requirements for a good terrain editor are 

specified in Chapter 3. To test ideas and evaluate techniques, a stand-alone testbed 

editor was developed. Although this dissertation is mostly about techniques and 

algorithms, software design and implementation considerations are shortly presented in 

Chapter 4. To render terrain with this editor, render algorithms are discussed in Chapter 

5. Furthermore, this chapter serves as a general introduction to graphics hardware 

programming. Chapter 6 discusses many algorithms that have been used for the purpose 

of terrain generation and editing in the past and explores ideas to improve and extend 

them. That chapter also serves as a basis for work further discussed in subsequent 

chapters. Chapter 7 starts with the discussion of ideas to make better use of current 

hardware to execute heightfield editing operations, leading to the description of the 

implemented pipeline, which uses the parallel power of the graphics processor. The 

pipeline is further discussed in Chapter 8, including details of several common and novel 

tools that have been implemented. Chapter 9 assesses the discussed work in relation to 

the research questions. In Chapter 10, opportunities for future work and the overall 

conclusions are presented.  
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2 Motivation 

Game content creation has traditionally been a manual process in order to squeeze the 

most out of the possibilities of a hardware platform. This manual creation of content is 

not scaling well with the increasing technological possibilities and users’ expectations. 

The game industry is currently wrestling with the problem of ever growing artist teams 

to keep up with the technological possibilities of game platforms. Currently, these artist 

teams handcraft most of the geometric models and shading details required for 3D 

characters and environments to make them look as good as possible. This has become one 

of the major expenses in all multi-million dollar game productions. Consequently, any 

improvement that somewhat alleviates this burden is welcomed. 

 

In practice, the tools available to different disciplines of game content creation evolve 

at different rates. For example, level designers still work in almost the same way as five 

or ten years ago. Investigating ways to improve the workflow and technology available to 

a level designer is expected to be very fruitful and is the main motivation for this 

research. For the evaluation of different techniques, a testbed was created to try out 

different techniques and tools, which can be used by the intended users. Limiting the 

scope of this research to heightfields had the advantage of being able to explore different 

editing techniques for a class of geometry specification that is supported by practically all 

outdoor games. This makes it possible to create a generic, stand-alone system that can 

import and export data from and to multiple existing game editors without changing any 

code. However, it should be noted that integrating the described tools into an existing 

game editor would shorten the work cycle by eliminating the need to import/export data 

at the cost of creating a game (engine)-specific system. As this research has been 

conducted in association with the W!Games game studio (Amsterdam, the Netherlands), 

which had no need for integration for any specific game engine at the time of writing, the 

prototype was created as a stand-alone application. Also, developing a custom pipeline 

capable of executing terrain operations in parallel is potentially quicker to implement 

and test in an independent testbed than it would be to retrofit it into existing code. 

Creating this custom parallel pipeline has become one of the focus points of this 

dissertation. As current terrain editors that support large, complex modifications are 

generally quite slow, and terrain editing is preferably an interactive process, any gain in 

speed will be more than welcome. 
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2.1 Terrain Heightfields 

Before discussing terrain rendering, generation and editing, a small overview is given 

of different classes of terrain geometry representation, each with its strength and 

weaknesses for use in interactive applications. Choosing the type of topology to use for 

terrain geometry has a large impact on the possible types of creation and editing 

algorithms. But it also greatly influences what rendering techniques are suitable, how 

level-of-detail can be implemented in the real-time engine (i.e the core of each real-time 

graphics application) and whether it is possible to have overhangs, arches and caves. 

Having such impact, the choice of which types of terrain geometry are supported is often 

dictated by the graphics engine. Five 

types of geometry are distinguished 

and described below, followed by a 

discussion of why this dissertation has 

limited itself to heightfields. Also, see 

Table 2-1. 

 

  

Tetrahedrons 

Starting with the most flexible type of terrain specification, tetrahedrons allow 

variable densities of vertices. Because of this flexibility, tetrahedrons are often used in 

physics simulations that use finite element techniques. Also, solid modeling can be 

implemented using tetrahedrons. However, this flexibility comes at the cost of larger 

storage requirements and more complex algorithms to handle the irregular 3D shapes 

and densities. Because of this, their use in interactive terrain specification, generation 

and rendering is limited. For this reason, algorithms working on tetrahedrons are not 

discussed further in this dissertation. 

 

 

Voxels 

 Voxels are values in a regular 3D grid. Like tetrahedrons, voxels represent three-

dimensional volumes. So, creating holes, overhangs and caves is relatively easy. 

However, the amount of local detail is limited by the (uniform) resolution of the regular 

 Irregular topology Regular topology 

Solid Tetrahedrons Voxels 

3D surface Irregular mesh Regular mesh 

2½D surface  Heightfields 

 
Table 2-1   Types of terrain geometry specification 
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grid. Also, the same resolution is present (and takes up memory) where potentially less 

resolution is needed. Because of this, voxels are generally memory inefficient. 

Furthermore, rendering voxels is generally less efficient than rendering triangle surfaces 

on today’s polygon-rasterization-based hardware accelerated graphics cards. 

Consequently, only few games actually use voxels. So, like tetrahedrons, voxels are not 

relevant enough to be treated in this dissertation. 

 

 

Irregular Meshes 

Irregular meshes, based on some irregular sampling, are surface based and have a 

flexible topology and can have varying densities of vertices. Although ideal for surface 

specification, the implementations of high-level modeling tools are more complex than 

implementations of equivalent tools for regular mesh representations. Rendering 

irregular meshes at full resolution is well supported by hardware. However, terrain 

rendering often requires different LOD (level-of-detail) levels at different parts of the 

mesh to render terrain at full resolution near the camera while rendering a coarser mesh 

further from the camera. Accomplishing this for irregular meshes is generally much more 

complex (and thus much more computationally intensive) than for regular meshes. This 

is also true for collision detection and response. Both of these issues are serious 

drawbacks in computer games because almost every 3D game needs fast level-of-detail 

schemes and collision detection to be able to run at real-time speeds. Because of this, 

irregular meshes are often only used for objects like characters and trees, where it is 

generally sufficient to control the level-of-detail for the object as a whole and only require 

more expensive collision detection when simpler tests succeed (e.g. bounding box tests).  

 

 

Regular Meshes 

Having a regular (grid-like) topology greatly reduces the complexity that is coupled 

with irregular meshes. Regular meshes are powerful enough to model overhangs and 

have varying vertex densities, but do not allow specification of arches, connected tunnels 

or other features that require holes or loops in the surface geometry. Also, most irregular 

mesh algorithms (e.g. procedural generation, editing, level-of-detail and collision 

detection algorithms) can be simplified and optimized for regular meshes. For 
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applications where heightfields are not sufficient because overhangs are needed, regular 

meshes might be a good choice.  

 

 

Heightfields 

Although the least powerful, most computer games use heightfields to represent 

terrain. A heightfield, also called heightmap, (digital) elevation map or DEM, represents 

a discretized height function of 2D coordinates on the horizontal plane, defined by height 

samples at regular discrete spacing. The height samples could be triangulated both 

regularly and irregularly, depending on the requirements and hardware support, and 

many fast level-of-detail rendering schemes have been devised and optimized for 

heightfields. Heightfields can be stored very compactly, because only data for the vertical 

axis needs to be stored, as the horizontal components are completely regular. 

 

Because heightfields are discrete functions of 2D space, they can be stored, visualized 

and even edited as grayscale images. Represented as a 2D grayscale image, the greyvalue 

indicates the local height. Editing techniques for heightfields and digital images are 

therefore interchangeable. By convention, the maximum altitude is represented by white 

and the minimum altitude by black. Heightfields of considerable detail are publicly 

available for planet Earth. These can be downloaded and used as a reference or a starting 

point for anyone interested. For example, see http://library.usgs.gov.  

 

Another advantage of heightfields is the ease of texture mapping, i.e. the process of 

mapping (colour) detail imagery onto the rendered geometry. A simple vertical 

orthographic projection of a detailed texture image onto the heightfield is generally 

sufficient. However, when a heightfield contains very steep areas, a simple vertical 

projection leads to an uneven distribution of texture resolution. Then, a more advanced 

texturing technique might be required to prevent the otherwise uneven distribution of 

texture resolution from becoming noticeable. See Section 5.3 for more details. Readily 

available satellite photographs can be used as texture images, which can be found online 

for the whole planet. For example, see http://www.truearth.com/. 

 

When supported by the engine, heightfields can be replaced locally by more powerful 

representations (e.g. regular meshes) where more resolution or geometry like overhangs 
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or arches is required. For example, see [GAMI01] for a 3D displacement mapping 

technique to create overhangs with heightfields.  

 

Because of the overall advantages of memory and render efficiency, heightfields are 

still the most common way to specify terrain for real-time 3D applications. Also, the 

simple data format makes it largely engine-independent, making it ideal to explore ideas 

that could be useful for many games. Consequently, this dissertation has limited its scope 

to the rendering and editing of heightfields. Literature on regular heightfields can be 

found that is either based on quadrilaterals, triangles or hexagons. For example, see 

[DIXO94] for procedural terrain generation techniques for different topologies. However, 

most literature assumes a quadrilateral structure and, moreover, almost all applications 

use regular quadrilaterals, often simply called quads. For this reason, heightfields 

mentioned in this dissertation are assumed to be based on regular quadrilaterals, unless 

explicitly stated otherwise.  

2.2 Image Processing 

As described before, the targeted users are experienced game level designers. These 

users typically already have practical knowledge of and experience with both 2D and 3D 

applications. Exploiting this experience by offering interfaces and capabilities similar to 

software that users are familiar with will shorten the learning curve. To this end, several 

interface controls and tools have been examined from existing tools such as powerful 

image processing applications (e.g. Adobe Photoshop) in an effort to compile a somewhat 

analogous toolset in the context of heightfield editing. These include the use of brushes 

and layers. 

 

From a technological point of view, the internal representation and processing of 

heightfields is more similar to images than to 3D geometry. Data structures for both 

heightfields and images consist of a two-dimensional matrix of values, only differing in 

the meaning of these values; individual height samples in the context of heightfields 

versus color or grayscale components in the context of imagery. This allows heightfields 

to be presented as 1-component (grayscale) images, typically using black and white as the 

minimum and maximum of a user-defined height range, respectively. Image operations 

can therefore be executing on heightfields and vice versa. Conversely, ideas, theory and 
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techniques from the field of image processing can also be used in the context of terrain. 

Of course, not all image processing techniques will prove to be valuable in this new 

context, but many of them have been explored in previous applications and will be found 

to be fruitful throughout this dissertation. 

2.3 Current Applications 

In this section, a few different applications that are currently available to designers 

are shortly reviewed for their support in the area of heightfield editing. This is by no 

means a complete list of available software. But it does give the reader an idea of the 

types of applications that are currently available for these purposes, including their 

typical merits and drawbacks. 

Terragen (PlanetSide) http://www.planetside.co.uk 

Terragen offers a non-real-time heightfield landscape synthesis and rendering system. 

Its built-in ray tracer is capable of creating very realistic images, including realistic 

lighting, atmospheric effects, clouds, water reflection and terrain shadowing. Local 

terrain editing is not supported. So heightfields are either created externally and 

imported or are completely procedurally synthesized. Heightfield synthesis techniques 

include noise synthesis, range mapping and erosion, which are provided to the user as a 

limited set of parameterized selectable options. Texturing is supported through texture 

splatting and is completely procedurally assigned, similarly to the hierarchical 

representation discussed in Section 5.3.1.5. Local texture editing is not supported. 

Vegetation or other objects are also not supported. The created heightfields and global 

textures can be exported to be used in other applications (e.g. a game engine or generic 

3D editing application capable of placing and rendering objects). Although the 

heightfields synthesized with Terragen look good, the number of different types of 

natural terrain that can be created with it is somewhat limited. 

World Machine (Stephen Schmitt) http://www.world-machine.com 
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Like Terragen, World Machine is a heightfield synthesis application. However, its 

main focus is flexibility to create these terrains. Simple real-time 2D and 3D rendering is 

supported, but this feature is by far not as impressive as Terragen’s (non-real-time) 

renderer. The user can design terrain by placing and connecting heightfield creation, 

blending and transformation nodes in a flow graph, supporting many synthesis 

techniques discussed in this report. Some images in this report have been made with 

World Machine, indicating its flexibility. A height-based texturing color scheme can be 

chosen from a limited number of presets. Foliage is not supported. Local editing (e.g. the 

use of interactive brushes) is also not possible. However, the node-based representation 

does support (imported or procedurally generated) masks to where procedural 

modifications should be limited to. Created heightfields can be exported to different 

formats. Proficient users are able to create various types of natural landscapes with it, 

but it generally requires much experience and tweaking to do so. 

Terragen 2 (PlanetSide) http://www.planetside.co.uk 

This new version of Terragen is currently still under development at the time of 

writing. Like the first Terragen, procedural synthesis and rendering are its main focus. 

Terragen 2 will be extended to allow overhangs. Automatic placement of imported rocks 

and vegetative models is supported. Foliage placement, texturing, heightfield synthesis 

and rendering options are represented in a powerful flow-graph system, allowing the user 

to connect function nodes as desired. Like World Machine, local editing is not supported 

but can be approximated through the use of node masks. Currently, only a technology 

preview application is available. Due to the flexibility of this system, synthesis and 

rendering are relatively slow, although this might be improved in the release version. 

The actual release date has not yet been announced.  

CryENGINE Sandbox 1 & 2 (Crytek) http://www.crytek.com 

Official WYSIWYG level editors for the Crytek game engines, used for the Farcry and 

Crysis games. These offer an impressive set of tools to aid the level designer. They are 

capable of loading stored heightfields and simple procedural terrain generation. Local 

editing is supported through the use of brushes. However, only the simple brushes 
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discussed in Section 6.1 are available. Extensive terrain texturing is supported, similar to 

the layered representation discussed in Section 5.3.1.5, including choosing between X, Y 

and Z projections. Textures can be assigned both manually and procedurally but use the 

same set of materials. Hence, reapplying a procedural texture assignment at a later stage 

would overwrite all custom texture modifications. Foliage brushes are well supported, 

allowing both manual and procedural placement of (imported) individual foliage objects. 

Sandbox 2 has more advanced features in texturing and placing foliage than the original 

Sandbox. Both versions offer an easy-to-use and intuitive user interface. 

UnrealEd 3 (Epic) http://www.unrealtechnology.com 

Official WYSIWYG level editor for the Unreal Engine 3 game engine and used for 

Gears of War. Fully integrated level design tool that supports heightfield importing, but 

offers no form of heightfield synthesis itself. Editing of heightfield is only supported 

through the basic editing brushes discussed in Section 6.1. Heightfield blending is not 

supported at all. Texture splatting is supported through the layered representation and 

allows a separation of procedurally assigned (base) layers and (overriding) custom layers 

that can be brushed manually. Basic procedural foliage placement is supported, but is not 

as advanced as the tools available in the CryENGINE Sandbox. The user interface of the 

editor is somewhat hard to use efficiently as it constantly requires manual settings to be 

set. 

  

From this summary of typical tools, it is clear that there is much potential for 

improvement. Although some game level editors offer some form of procedural heightfield 

synthesis, the tools available to designers can roughly be divided into two categories:  

 

- Low-level level editing applications, supporting simple and local terrain editing 

tools, while offering little or no support for procedural techniques. 

 

- Procedural landscape generators, capable of synthesizing and previewing terrain 

to render new images (e.g. for movie productions) or export resulting heightfields 

for further use in other applications. These applications generally generate 

terrains as a whole and offer no tools to edit terrain locally.  
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3 System Requirements 

Ideally, designing game levels is an iterative 

process. Often, designers create a fairly detailed level 

which is then compiled and evaluated. See Figure 3-1. 

Note that the compile step should be as automated and 

as fast as possible. Evaluation involves testing a level 

for the amount of entertainment, which is hard to 

estimate beforehand. When the level doesn’t ‘feel 

finished’, the level is tweaked again. Tweaking a level 

might involve moving only a few objects around or, for 

example, slightly moving a road. But when that road 

needs to be adjusted and a large terrain feature like a 

mountain is in its path, a large area might be affected. 

 

However, most applications available to level designers typically are designed solely 

around the idea of working from large to small. See Figure 3-2. The arrows indicate the 

direction of the (enforced) workflow. After the initial idea of a level has been decided, 

designers have a choice of starting off with a global approximation of this outline. One 

way of doing this is by searching for a (real-world) example of the type of terrain they 

desire. Another way is to have an application generate a random terrain algorithmically 

(i.e. procedurally). Techniques used to do this are discussed in Section 6.3. Having a 

rough first approximation for a level greatly reduces production time when it is relatively 

close to the desired end result. Then, large-scale global features can be generated, 

followed by small-scale local editing. The disadvantage of the typical workflow using 

these tools is that, once an approximation for the whole level has been chosen, only lower-

level manual editing is possible. This means that only a workflow from left to right in 

Figure 3-2 is supported, making iterative design of both large and small features, as 

suggested in Figure 3-1, very difficult. 

 

This report is partly dedicated to editing techniques that would allow higher-level 

handcrafted or generated features to be mixed and edited at any scale at any time in the 

design process, to better support the iterative process of a tweak-and-evaluate workflow. 

Integrating such techniques into the applications available to the designer would, for 

Tweak large terrain 
features, small terrain 
details, game objects

Tweak large terrain 
features, small terrain 
details, game objects

CompileCompile

Evaluate gameplayEvaluate gameplay

 
Figure 3-1   An ideal level design workflow 
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instance, allow adding a detailed generated mountain in a designated area with minimal 

effort even after other areas are already tweaked.  

- Brainstorm session
- Design Document
- Central Theme
- etc.

- Brainstorm session
- Design Document
- Central Theme
- etc.

Procedural generation of 
a random terrain

Procedural generation of 
a random terrain

Start from scratchStart from scratch

Import real-world terrainImport real-world terrain

Add or edit global features
- Mountains
- Hills
- Rivers
- Forest
- etc.

Add or edit global features
- Mountains
- Hills
- Rivers
- Forest
- etc.

Add or edit local features
- Locally edit global feature
- Add detail
- Add single trees
- etc.

Add or edit local features
- Locally edit global feature
- Add detail
- Add single trees
- etc.

 
Figure 3-2   Typical workflow supported by current applications 

3.1 Time Considerations 

Even complex tools and parameters become usable to non-technical designers when 

their effect is directly visible. Because optimizing a virtual world for its amount of fun or 

artistic beauty isn’t an exact science, it is often a process of trial-and-error. Shortening 

the feedback loop gives designers the opportunity to experiment with parameters more 

freely. Therefore, having tools that can be used at interactive speeds is a valuable asset. 

 

If calculating the effect of a tool is too computationally intensive to allow a preview of 

the effect in the edited world at interactive speeds, previewing the result at a smaller 

resolution might be a good compromise. This smaller preview might either be a smaller 

window or a less dense geometry representation that the operation is performed upon. 

Obviously, this is only useful if the preview of the result at reduced resolution is a fair 

approximation of the final result. 

 

The hardware available to designers typically consists of a stand-alone powerful 

desktop computer with plenty of RAM and a high-end graphics card with a powerful 

Graphics Programming Unit, or GPU for short. Since the early days of hardware-

accelerated video cards, the processing power of the GPU has increased dramatically and 

remains to grow faster than CPU processing power. Factors that contribute to this fact 

are the increased clock speeds, amount and speed of onboard dedicated memory and the 
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shift from a single special-purpose graphics processing unit to multiple (almost) general-

purpose programmable vector processing units. Many algorithms that can be 

implemented for partial or full parallel execution can potentially be more than one 

magnitude faster when work is transferred from the CPU to the GPU. Because terrain 

manipulation is very data-intensive and very regular, executing these manipulations on 

the GPU is very likely to increase the performance. Having fast tools increases the user’s 

efficiency, which is why this dissertation is partly dedicated to setting up a pipeline for 

this type of parallelization (Chapter 7) and testing several translated manipulation 

algorithms (Chapter 8). 

3.2 Memory Considerations 

As explained in Section 2.1, heightfields can be stored relatively memory efficient, as 

only the vertical component of the height samples needs to be stored due to its regular 

sampling. Still, large outdoor areas can consume many millions of bytes. For example, a 

terrain of 4 by 4 km using a sampling density of one sample per m2 and 16 bits of height 

data per sample results in 32 MB of data. This doesn’t sound like much for modern day 

machines, but when an editor would keep multiple versions (e.g. for undo functionality), 

and overlapping sections (e.g. layers) of the terrain and multiple masks and texturing 

data in memory, it could easily take up all available main memory during editing unless 

special case is taken. Moreover, naïve rendering and heightfield modifications on the 

GPU would require the heightfield(s) to reside completely in video memory, which is 

typically only a fraction of the amount of system memory. Consequently, both rendering 

and editing algorithms and capabilities must be evaluated for their memory usage. 

3.3 Platform Considerations 

The general ideas discussed in this dissertation are largely platform and hardware 

independent but are assumed to be used on modern PCs. This is a reasonable 

assumption, as the vast majority of computers that are used during both console and PC 

game development are reasonably fast PCs. No vendor-specific capabilities are assumed. 

Also, the latest advancements in hardware standards are not assumed to be available on 

all targeted user computers. Consequently, a minimum of DirectX Shader Model 3.0 or 
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OpenGL with similar capabilities is targeted throughout this dissertation. This would 

cover practically all PCs new enough to run modern games. 

 

The testbed application was developed largely on an 2 GHz Intel Core 2 PC with 2 GB 

RAM and an NVIDIA 7900 Go GTX with 512 MB video memory, using Microsoft 

Windows XP and DirectX 9.0c. The testbed has been successfully tried on other 

computers for testing and debugging purposes as well. These setups included both older 

and newer graphics cards (e.g. NVIDIA Geforce 6600 GT 256 MB, NVIDIA 8800 GTS 512 

MB and ATI X1600 256 MB), but all with at least Shader Model 3.0 support.  

 

The implementation builds upon multi-platform open source code. Although the 

testbed was developed primarily for a Windows/DirectX setup, its multi-platform 

components would allow for a relatively easy migration to other platforms. For example, 

the testbed has also been tested using OpenGL instead of DirectX, which was achieved by 

changing only a few lines of code. The testbed has been implemented as a stand-alone 

application as there was no need to integrate the technology with a specific game at the 

time of writing. However, the modular design and flexibility of the testbed would simplify 

conversion and integration with an existing engine. 

3.4 Usability 

Although higher-level tools that might be offered in a terrain editing application are 

typically more mathematically involved and harder to code, the user of such a tool should 

not be required to understand the technical details before he/she can use it proficiently. 

All that the user should be concerned about is achieving the desired result. This means 

that tools should behave in an intuitive way that is predictable to a non-technical user. 

The function of any tools should be unambiguous and easily describable to both technical 

and non-technical users.  

 

One aspect of creating intuitive tools is choosing the right parameter space. Several 

aspects come into play when designing an intuitive toolset that lends itself to intuitive 

tweaking. What follows are some examples that can be used as guidelines for UI design: 

 



Effective GPU-based synthesis and editing of realistic heightfields – G.J.P. de Carpentier 18 

- Tools that allow parameters to be tweaked to achieve different results should 

offer an appropriate amount of freedom. Too few parameters, and more advanced 

users are unable to fully benefit from the technology. Too many parameters, and 

novice users might get overwhelmed by the possibilities.  

- Parameters should have a descriptive name of their effect, which is not per se a 

term used in scientific literature, for example. 

- The effect of different parameters should be as independent as possible. 

Presenting multiple parameters that only have slightly different effects should be 

avoided where possible. 

- The value range of any parameter should be intuitive to the user. Having a value 

range of 0-1000 with only values between 700 and 800 having a useful effect isn’t 

the best choice. 

 

Another way to make complex tools more accessible to non-technical users is to offer 

presets. These presets can be used to store and retrieve particular settings of a tool and 

can be named after their effect. By allowing these presets to be shared between users, 

relatively few users would have to create presets, that can then be imported and used by 

other users. This might also create a more consistent look between parts of a world 

created by different users. 

3.5 Toolset Considerations 

As with any design of a user interface, having a consistent set of tools makes working 

with it more intuitive. This means the interface of different tools should be as consistent 

as possible. For instance, having two tools that both need a radius as input should 

generally offer the same type of interface for this particular parameter. This can be 

achieved through the consistent use of particular input controls, hotkeys and 3D widgets. 

 

Also, creating a user interface that is consistent with other applications that level 

designers are familiar with will make a tool easier to work with. For example, 

implementing (customizable) mouse and key functionality for navigating through a 3D 

world that is similar to one or more widely used 3D applications is generally appreciated 

and will increase the overall productivity. 
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The iterative nature of level design benefits from a powerful multiple-undo function. 

Having ‘Ctrl-Z’ functionality greatly helps the designer to experiment with tweaking an 

effect that requires the execution of a sequence of multiple tools. When multiple undo 

actions are allowed, the user can backtrack to any given point in the action history and 

restart from there. 

 

Having a representation that allows users to tweak a tool that was applied before the 

most recent operation, without undoing the intermediate operations, further increases 

this flexibility. One representation that offers this functionality is the separation of 

(manipulated) data in multiple layers. Many designers already are familiar with this idea 

from Adobe Photoshop, a well known and powerful 2D image manipulation application. 

In Photoshop, the user can create multiple layers in a hierarchy and select the layer a 

tool should be applied to. These layers are internally combined bottom-to-top by the 

application in order to render the combined output image. Combining a layer with the 

layers below is done using a user-selectable combine operation per layer while optionally 

limiting the effect of a layer to a local area using an additional mask image. This allows 

Photoshop users to separate different elements of a picture and independently apply 

operations to them (e.g. draw with the selected brush, translate, scale and blur) or apply 

operations to the relation between a layer and the layers below (e.g. blend mode and 

opacity setting). A possible drawback of this layered representation is the memory 

footprint that grows linearly with the number of layers. 

 

Even more flexible and powerful is the representation of operations as a two-

dimensional flow graph of operation nodes. This allows the user to apply a tool by 

connecting the input(s) of a new operation node to any of the already present nodes in a 

visualized flow network. Tweaking any of the previous steps can be accomplished by 

changing parameters in any of the nodes and recursively recalculate dependent outputs 

until all nodes are up to date again. A few powerful high-end content creation and 

processing applications use this representation. Examples of these are Apple’s Shake 

compositing tool and Side Effects Software’s Houdini procedural 3D animation/effects 

tool. A typical designer might not be used to ‘thinking’ in flow graphs and operation 

building blocks, causing a steep learning curve. However, expert users might be very 

pleased by the, otherwise hard to accomplish, flexibility. A drawback of this system is the 

amount of recalculation required when applying a change to the flow graph. This can be 
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partly alleviated by reusing cached outputs if none of their inputs was affected by a 

change. Of course, caching considerably increases the memory footprint for large flow 

charts.  

 

In short, which of the above representations is the most appropriate depends on the 

need for flexibility, the available system resources and the expertise of the user. 

Experimentation with the node-based World Machine showed that gigabytes of data 

needed to be processed for more useful (and complex) graphs. As this would be prohibitive 

for the purpose of interactive terrain editing, the layered representation is preferred. 

  

Even though procedurally generated and placed geometry, texturing and foliage might 

look nice at a first glance, level designers easily spot the limitations of most current 

procedural implementations. Generally, natural terrain has different types of features at 

different locations. Also, most levels are designed with a clear idea of what type of 

environment it should be set in. However, most procedural techniques are best suited for 

creating one or a few terrain types (e.g. ridged mountains, rolling hills, sand dunes, rivers 

or islands). Therefore, it isn’t recommended to have one technique create the terrain for a 

whole game or even a level. Having a plethora of different techniques to choose from 

enables the designer to pick the right tool for the job at hand. 

 

The quality of any terrain tool is difficult to measure quantitatively. If all processes 

involved in the creation of a certain type of landscape are fairly well understood, it would 

be possible to create a model of these physical effects and run a simulation. Although this 

will result in the physically most accurate results, running a full simulation might be 

impossible due to a limited understanding of a process or impractical due to the vast 

computational power required for an accurate simulation. Luckily, as an engineer and 

artist, not as a scientist, a level designer is generally satisfied if a tool is available that 

has the desired effect, whether such a tool is physically correct or not. For the typical user 

of a terrain editor for games, subjective beauty of the result is much more important than 

objective measurements, mathematical elegance or statistical proof. For this exact 

reason, this report focuses mainly on the effects of different (efficient) methods, not on 

mathematical backgrounds. 
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4 Software Development 

As evident from the chosen problem domain, research questions and the many 

overviews of different options and techniques throughout this dissertation, this report 

covers a lot of material. Consequently, it would not have been feasible to create an all-

round software solution containing all mentioned ideas and techniques to solve the 

difficulties at hand, given the time usually taken to complete an MSc. research project. 

Therefore, only relatively novel techniques have been implemented, which would be hard 

to discuss without having an implementation. These techniques include a parallel 

processing pipeline capable of making efficient use of resources and several complex tools. 

 

As the implementation was not expected (or desired) to be integrated with an existing 

editor or game engine, a stand-alone application has been developed instead. This 

application has the purpose of trying out and evaluating common and novel ideas, and 

was set up to serve as a potential starting point for the creation a fully developed terrain 

editing application in the future.  

 

A classic waterfall design process with incremental phases has taken place to create 

this application and roughly consisted of the following steps: 

 

• Analysis of existing editing technology, literature techniques and user 

requirements. This was already partly conducted as part of the MKE 

literature research phase. This is mainly covered in Chapters 1 - 3 

 

• Analysis of the expectations and requirements of W!Games. This is shortly 

covered in Chapter 2 

 

• Analysis of multi-threading technologies. See Chapter 7 

 

• Design and implementation of basis framework using carefully selected 

software libraries 
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• Analysis and comparison of several terrain rendering algorithms, design and 

implementation of the most suited algorithm. This is covered in detail in 

Chapter 6 

 

• Design and implementation of basic brush system, universal settings GUI and 

import/export functionality 

 

• Design and implementation of several straightforward and single-threaded 

CPU brushes 

 

• In-depth analysis of graphics processor (GPU) programming capabilities. See 

Chapter 7 

 

• Incremental and experimental design and implementation of GPU editing 

pipeline. See Chapter 7 

 

• Optimization of the GPU editing pipeline implementation. See Chapter 7 

 

• Design and implementation of complex, controllable and fast brushes using 

this pipeline. This is covered in Chapter 8 

 

As the implementation would have an experimental character during this research, 

but might be used as a basis to create a full fledged application or be integrated with 

other applications in the future, a good and flexible software design was needed. 

Furthermore, attention was given to selecting only software libraries that would be free 

of charge for both commercial and non-commerical use. 

 

The implementation has completely been written in the object-oriented C++ language, 

as this language is capable of creating fast and efficient applications, offers much control 

over hardware resources and is typically the main programming language used in game 

development studios, including W!Games. Microsoft Visual Studio 2005 has been used as 

development environment. 
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For rendering 3D graphics, the free and open-source graphics engine Ogre3D was 

chosen [OGRE3D]. This engine offers a clean abstraction of all DirectX and/or OpenGL 

related interfaces, is fast, would be flexible enough for the intended purposes and is 

constantly improved and extended by a large and active community. It is licensed under 

the LGPL license, meaning that it can be used free of charge without further obligations, 

as long as the engine itself is not modified. Furthermore, its graphics pipeline supports 

the use of complex shaders and can be run in both OpenGL and DirectX mode. Also, it is 

largely platform independent as it runs on Windows, Linux and MacOS systems, 

increasing portability. Note that Ogre3D is a graphics engine and not a game engine, as 

it does not offer native support for input devices, actors, game logic, audio, physics or an 

editor. To get low-level access to input devices like mouse, keyboard and tablet, the light-

weight OIS [OIS] and Wintab [WINTAB] libraries have been used. 

 

To create a typical (editor) user interface, the open source library wxWidgets has been 

used [WXWIDG]. This free library offers easy creation of windows, buttons and dialogs 

and such. Like Ogre3D, it is licensed under the LGPL license and is multi-platform. To 

accommodate any future integration of the implemented testbed with another application 

as best as possible, all GUI code has been separated from the rendering and editing code 

in the software design. 

 

As the problem statement and research questions demand the in-depth exploration of 

techniques, theories and solutions, this dissertation will focus more on these topics than 

the exact software design details of the testbed implementation. Moreover, a detailed 

description and explanation of all individual classes in the implementation would be 

quite extensive and would require in-depth knowledge of the used libraries, technology 

and language paradigms like C++ meta programming. Consequently, the only C++ 

specific details of the design and implementation can be found in Appendix A and B in 

the form of UML class diagrams. This does not mean that this dissertation will leave out 

all design and implementation details, but these will be treated throughout the 

dissertation on a more functional level, interleaved with theory and explanations. For 

example, the next section includes specifics of the used rendering algorithm and its 

implementation. 
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5 Rendering 

Although the main focus of this dissertation lies on terrain editing, different real-time 

terrain rendering algorithms are described in this chapter. The terrain renderer 

influences the speed of terrain updates and might or might not be optimized for memory 

footprint. Therefore, choosing the right renderer, when not already dictated by a used 

engine, can optimize the terrain editing speed by requiring less preprocessing and less 

memory cache swapping, for example. Section 5.1 shortly described the basics of 

hardware accelerated rendering on contemporary PCs. This will form a basis for the 

remaining sections in this chapter, but also serves as an introduction to the foundation 

on which the hardware-accelerated editing algorithms are built that are described in 

Chapter 7 and 8. Although Section 5.2 and 5.3 might be interesting to readers that are 

looking for suggestions and details to render terrain efficiently in real-time application 

and they are referred to a few times from the remainder of this dissertation, they are 

somewhat less relevant to the central research questions in this dissertation. However, 

they are included here for completeness, as the render implementation can still influence 

the terrain update and render speed during editing and formed an integral part of the 

development of the implemented testbed. 

 

After the first section, a survey of different techniques for fast terrain rendering is 

given in Section 5.2. This survey is followed by some of the details of the testbed 

implementation in Section 5.2.2. In Section 5.3, different techniques to texture the 

terrain geometry are discussed, including specifics of the testbed implementation. 

 

As explained before, this dissertation is limited to editing heightfields for games. After 

creation, these heightfields can then be used to render in real-time using the actual game 

engine. But, obviously, a heightfield also needs to be rendered during interactive 

rendering in an (external) editor. Many algorithms exist to render heightfields, each with 

different considerations, advantages and drawbacks. Differences exist in whether terrain 

patches have continuous or discrete levels of detail (also called LOD levels), the way 

different LOD levels morph and stitch, the LOD level update frequency, LOD pixel error 

metrics, the use of hardware-accelerated operations and data structures, texturing 

techniques and more. 
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Algorithms that are commonly used to render terrain (or any type of 3D objects, for 

that matter) can roughly be divided into two categories: ray tracing and rasterization. 

Ray tracing is sometimes used in off-line movie productions as certain effects are more 

easily defined in ray tracing algorithms (e.g. spline surfaces, secondary ray lighting 

effects and ambient occlusion). But almost all graphics on PCs for real-time purposes use 

rasterization, as this is far better supported and accelerated with today’s graphic cards. 

For this reason, subsequent subsections only focus on the rasterization pipeline in today‘s 

computers and its applications in terrain rendering. 

5.1 Graphics Pipeline 

Today’s graphics hardware found in most PCs (and newer consoles) is a hardware 

subsystem intended to process graphics data and present it to the user. This subsystem is 

capable of working along side the central processing unit (i.e. the CPU) and has its own 

dedicated processor. This Graphics Processing Unit (i.e. the GPU) transforms, lights and 

rasterizes 3D geometry to calculate the color values for individual pixels on a screen. For 

this purpose, the GPU is typically capable of executing vector operations and processes 

instructions in parallel using one or more cores in parallel.  

 

The graphics data to be processed is generally stored in dedicated video memory, 

which has a higher bandwidth than ordinary system/main memory to accommodate fast 

data reading and writing. Older systems sometimes do not have dedicated video memory 

and use (shared) system memory instead. System memory that contains scene data can 

be copied to video memory using a specialized hardware data bus. The AGP standard has 

been used for this purpose for many years, but a shift to the faster PCI-Express bus is 

currently taking place. 

 

To use the GPU on a PC, a software driver is installed that implements a common 

device driver interface to allow transparent and unified access to the hardware-

accelerated capabilities.  Microsoft DirectX Direct3D and OpenGL are the best known 

and most widely used examples of these interfaces. In turn, applications can use the 

application-side of the DirectX or OpenGL library to drive the hardware. The Microsoft 

DirectX Direct3D is available on Microsoft Windows. The OpenGL API is available on 

Microsoft Windows, Linux, MacOS and many more platforms. Both can be accessed from 
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a wide range of programming languages. There are some differences between these APIs 

(e.g. amount of helper functions, use of vendor-specific advanced capabilities and the 

shader languages), but for the most part, the APIs offer the same set of functionality. 

 

The testbed that has been created during this research builds upon the Ogre graphics 

engine, as already explained in Chapter 4. This engine wraps graphics API-specific calls, 

among other things, and offers a clean and largely graphics API-independent interface to 

the programmer. By only using multi-platform libraries (e.g. Ogre and wxWidgets), the 

created framework would be able to run on different platforms with little modification. 

 

Over the years, the processing power and flexibility of the GPUs have been greatly 

improved. To make the most of the latest hardware capabilities, many (coexisting) 

revisions to the OpenGL and DirectX APIs have been made. Today, two different pipeline 

models are exposed by these libraries which can be used side by side: an older fixed-

function pipeline and a newer programmable pipeline. The fixed function pipeline offers 

many lighting, clipping and texturing options that can be selected and combined, but does 

not nearly offer as much flexibility as the more general-purpose programmable pipeline. 

However, not all steps are programmable in the programmable model; only what is called 

a vertex shader and pixel shader (also called a fragment shader) can be programmed. 

These allow specialized programs to execute for each triangle vertex and rasterized 

triangle pixel, respectively. See Figure 5-1. In this figure, the pipeline components 

operate from left to right. Vertex, topology and texture data resides in video memory. 

Vertex processing transforms incoming vertices using either fixed functions or a vertex 

program. Then, the transformed vertices for each triangle are rasterized and all vertex 

data is interpolated over the triangle surfaces. Each pixel that is rasterized is then given 

a color using a fixed function or a pixel shader, possibly based on (multiple) texture reads 

and might undergo different tests (scissor test, alpha test, stencil test and depth test). 

Based on the pixel processing and test outputs, the calculated pixel color is blended with 

the previous pixel color and written to the framebuffer. 
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Figure 5-1   Graphics pipeline 

A recent addition to the programmable pipeline is the geometry shader, which 

operates between the vertex shader and pixel shader and can transform one set of 

vertices into another set. One possible use of geometry shaders is hardware-accelerated 

triangle tessellation, which would certainly be interesting in the field of level-of-detail 

terrain rendering. However, this technology is relatively new (only supported under 

DirectX 10) and is still ill supported. As few implementations and papers exist on this 

topic and this dissertation focuses on today’s modern, but widely available hardware, no 

further attention is paid to this technology. But as hardware is updated regularly, this 

would certainly be something to look at in the near future. 

 

 As the graphics pipeline is becoming more and more programmable with each 

generation of hardware, applications that use the processing power for purposes other 

than graphics are becoming feasible. Examples of this are audio processing, matrix 

manipulation, physics simulations and computationally-intensive scientific experiments. 

The reason for the interest for the GPU as a general-purpose parallel processor from 

other fields is simple: it has more processing power and memory bandwidth than CPUs of 

the same generation and they are relatively cheap and widely available. The gain in 

performance that can be achieved by moving work from the CPU to a GPU depends on 

the possibility to massively parallelize an algorithm, limiting its use to specific classes of 

algorithms. As a matrix of height samples (i.e. a heightfield) can directly be implemented 

as a texture and the same heightfield editing operation is typically executed for many 

neighboring height samples (i.e. pixels), heightfield editing is ideal to be implemented as 

GPU algorithms. This possibility is further explored in Chapter 7 and 8.  

 

Vertex and pixel shaders are (short) programs that can be executed millions (or even 

billions) of times per second. Specialized languages exist to specify vertex and pixel 

shaders. As GPUs only accept assembler instructions, higher-level shader languages are 



Effective GPU-based synthesis and editing of realistic heightfields – G.J.P. de Carpentier 28 

compiled before being uploaded to a GPU. Because the assembler instruction set can vary 

per hardware generation, these compilers generally can target and optimize for different 

hardware profiles. Examples of high-level shader languages are High Level Shading 

Language (HLSL), OpenGL Shading Language (GLSL), and C for Graphics (Cg). The first 

is only natively supported by Microsoft DirectX, the second only by OpenGL. The Cg 

language is capable of output both HLSL and GLSL code, making it compatible with both 

graphics APIs. For this reason, the Cg language was used during this research to create 

shader programs for both heightfield rendering and heightfield processing. For an in-

depth discussion of the Cg language, see [FERN03]. A more thorough discussion of 

graphics programming languages is given in 7.3.1. 

 

Different generations of programmable GPUs differ in the size of the supported 

assembler instruction set, the maximum program size, maximum (dependent) texture 

reads per pixel and maximum amount of variables and constants. This dissertation only 

targets Microsoft DirectX shader model 3.0 (PS 3.0 and VS 3.0), as this version is 

supported by most modern PCs. This model is the first to practically overcome limitations 

such as maximum code and texture reads, making it possible to write much more 

powerful and generic programs. Shader model 4.0 is the latest in this series but is 

currently much less supported and requires Microsoft DirectX 10 (which, in turn, 

requires Microsoft Windows Vista). Hardware that supports DirectX shader model 3.0 

typically also supports OpenGL profiles that are equally powerful and compile from the 

same Cg program, making it possible to execute the shader programs with both graphics 

APIs. 



Effective GPU-based synthesis and editing of realistic heightfields – G.J.P. de Carpentier 29 

5.2 Terrain Geometry 

The data that makes up a heightfield forms a 

regular grid of height samples. To render a terrain 

from these height samples, a surface must be defined 

from the samples. Also, a material is applied to the 

surface to shade the triangles. See Figure 5-2. 

 

Although it is possible to create and render smooth 

spline surfaces based on these samples, the sample 

grid is normally directly triangulated, as triangles are 

much faster to render using today’s graphics 

hardware. Three possible methods of subdividing the 

heightfield directly into triangles are depicted in 

Figure 5-3. Even though the vertices of all three 

examples are identical, differences between the triangulation would become visible for 

rough terrain; the left example would result in a smoother shape for a ridge that follows 

the diagonal triangle edges, but would show a saw-tooth-like pattern for ridges 

perpendicular to the diagonal triangle edges. In that respect, the example in the middle is 

more isotropic (i.e. rotation-independent). The example on the right allows the user to 

specify the orientation per triangle pair, requiring just one extra bit per height sample. 

Of course, more complex and irregular triangulations are also possible, skipping some 

height samples during triangulation based on different criteria. 

 

 
 

Figure 5-2   Heightfield render steps. Top 
to bottom: Regular heightfield grid, surface 

triangulation, surface shading 
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Regular triangulation. Twice as much 
resolution (i.e. sample density) in one 

diagonal direction than the other 
diagonal direction. 

 
Regular checkerboard-like 

triangulation. Both diagonals have 
identical average resolution. 

 
Irregular triangulation. Their diagonal 

can be selected per cell, gaining 
control over relative diagonal 

resolution. 
 

Figure 5-3   Heightfield triangulation 

  
 

Camera-independent mesh density. Note the distance-
dependent vertex density in screen space. 

 
Camera-dependent mesh density. Here, tiles (i.e. blocks) of 
geometry are subdivided at different world-space densities 
to achieve a roughly distance-independent screen-space 

vertex density 
 

Figure 5-4   Camera-(in)dependent heightfield tessellation 

5.2.1 LOD Techniques 

A complete heightfield can be rendered using one of the simple schemes depicted in 

Figure 5-3. Then, however, terrain triangles that are viewed from afar might be smaller 

than a single pixel. Having sub-pixel triangles does not only cause spatial aliasing, it also 

wastes valuable bandwidth and processing power. For example, a 4K x 4K heightfield 

would consist of 32 million triangles. Rendering this many triangles would have a severe 

impact on the frame rate, even on today’s hardware. For this reason, many different so-

called level-of-detail (LOD) rendering algorithms have been devised that try to minimize 

the number of actually rendered triangles by merging triangles together that would be 

too small to matter when seen from a virtual camera. Consequently, the local mesh 

density (triangulation) of the terrain will depend on the camera parameters like position, 

rotation and field of view. See Figure 5-4. As camera movement is typically smooth, 

frame coherency can be exploited by updating the mesh incrementally, reusing as much 
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of the triangulation as possible between frames. LOD render algorithms typically are 

optimized to make use of the simple topology of heightfields and would not work on 

arbitrary 3D geometry.  What follows is a survey of several LOD techniques that have 

been devised over the years. This survey is by no means complete, but does discuss a wide 

range of different (once) popular approaches. The algorithms are categorized into three 

classes: continuous, discrete and (semi-)fixed. Lastly, the algorithm that has been 

implemented in the testbed is discussed in Section 5.2.2 in more detail. This algorithm 

has been chosen based on the criteria discussed in Section 5.2.1.4. 

5.2.1.1 Continuous LOD 

Classic terrain level-of-detail rendering algorithms focus on merging triangles to an 

optimal solution, given some error metric. Advantages are the high quality of the 

triangulation and an exact and controllable error bound. However, the triangle mesh 

requires many (small) updates when the camera moves. The costs are usually amortized 

by spreading the execution of any queued updates over multiple frames. The overhead of 

updating the triangulation used to be a small price to pay when compared to less optimal 

(e.g. brute-force) rendering schemes, as the largest bottleneck in render performance was 

mainly the triangle count. These optimal algorithms are called continuous level of detail 

algorithms and were most popular before the year 2000. Although not actually used for 

this thesis, several well-known algorithms are mentioned below for the sake of context 

and completeness. Lindstrom et al. introduced a two-step quadtree-based algorithm that 

uses a screen space error metric and hierarchical blocks of triangles to decide on 

individual LOD levels, followed by fine-grained triangle simplification step [LIND96]. 

The error metric is based around measuring the change in height in screen-space that 

would occur when merging a triangle pair, as seen through the virtual camera.  

 

Duchaineau et al. presented a method called Real-time Optimally Adapting Meshes 

(ROAM), that both splits and merges individual isosceles right triangles to new isosceles 

right triangles [DUCH97]. Separate split and merge priority queues are used to have 

control over the amount of time spent on updates per frame, while executing updates that 

have a larger effect of the error metric first. Besides a basic screen-space error metric, it 

also supports more advanced metrics accounting for back-face detail reduction, silhouette 

edges and frustum culling. Due to its fine update control, a guaranteed exact triangle 
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count can be achieved. Although this algorithm makes the most of coherency between 

frames, the overhead of updating these queues limits its performance gain. In [RÖTT98], 

a hierarchical depth-first quad-splitting algorithm is presented that is optimized for 

memory efficiency, but does not implement incremental updates of the triangulation once 

created, limiting its performance for large terrains.  

 

As mesh updates can cause small sudden 

changes in appearance, called vertex popping, 

a technique called vertex morphing can be 

applied to most algorithms, which allows an 

animated transition of local geometry to a 

different level of detail [RÖTT98]. This is 

achieved by linearly blending between the 

actual finer triangulation and the coarser 

triangulation that is projected onto the finer triangulation geometry, until the transition 

is completed.  

5.2.1.2 Discrete LOD 

Due to advancements in graphics hardware, today’s graphics processors are capable of 

rendering many more triangles per second. More triangles also means more triangulation 

updates as the camera moves. For this reason, the relatively slow data bus that is used to 

transfer geometry data from the CPU and main memory to the graphics card’s memory 

has become much more of a bottleneck. Furthermore, these updates require 

synchronization of the graphics processor, stalling today’s GPUs as these have become 

much better optimized for cached, asynchronous rendering. Also, triangles are rendered 

most efficiently when they are batched (combined in one render call) in as few batches as 

possible. Hence, it is generally better for modern PCs to use algorithms that minimize the 

number of updates, even when this means rendering (slightly) more triangles. Several 

algorithms have been created with this in mind. Most of these employ a discrete, or 

static, level of detail technique that partitions the heightfield into equally-sized blocks, 

called tiles, and only applies updates at this tile level instead of at the triangle level. As a 

result, the CPU load and the amount of graphics hardware data updates are minimized. 

Furthermore, by combining triangles into regular tiles, triangles are much easier to batch 

 
 

Figure 5-5   Example of a ROAM terrain. From 
[DUCH97] 
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into one or a few batches per tile in order to optimize render calls. As a result of tiling, 

changes happen on a larger scale and are compacted into fewer updates, and so, the 

vertex popping artifact becomes much more noticeable. Vertex morphing can be applied 

for most of these discrete level-of-detail algorithms as well, greatly smoothing transitions 

between tile LOD changes.  

 

One discrete LOD approach was 

introduced by Hoppe [HOPP98]. It 

produces several triangulated 

irregular networks (TINs) of different 

quality (i.e. LOD levels) for each 

square tile. The vertices at each tile’s 

edges are kept unmodified, creating a 

seamless connection to neighboring 

tiles. See Figure 5-6. This TIN-based 

approached results in fewer triangles 

than more regular grid-based methods, 

but requires more preprocessing and is 

relatively memory intensive. Most 

common discrete LOD algorithms are 

based around semi-regular 

triangulations, differing only in their 

error metrics, data structures and 

ways to seamlessly connect 

neighboring tiles, as will be discussed 

next. An example of such a 

triangulation is depicted in Figure 5-7. 

 

 Special attention needs to be paid to connect borders of neighboring tiles to prevent 

possible gaps due to different LOD resolutions. In [ULRI02], a downward vertical polygon 

‘skirt’ of conservative height is connected to the perimeter of each tile to effectively hide 

these gaps. As these gaps would be relatively small when compared to the tiles, this skirt 

usually does not stand out if lighted and textures identical to the rest of the tiles. 

  
 

Figure 5-6   Splitting terrain into tiles and creating TIN meshes of 
various quality levels for each tile. From [HOPP98] 

 
 

Figure 5-7   Example of GeoMipMapped tiles using 16 x 16 grid 
cells per tile for a heightfield of 50 x 50 samples. The camera 

would be located at the bottom right corner 
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Obviously, rendering these extra polygons increases triangle count and overdraw for low 

camera angles.  

 

 An algorithm called GeoMipMapping [BOER00] uses a different approach. To close 

potential gaps at the shared border of neighboring tiles that use a different LOD level, 

the topology of each the triangles near each border is modified in such a way that the 

triangles at the edges of a tile of a finer LOD level will match the tile borders’ topology of 

each of its neighbors with a coarser LOD level. See Figure 5-7. A tile is rendered in a 

single batch by using an indexed triangle list. This means that the geometry is defined by 

two buffers: a vertex buffer and an index buffer. As the name implies, the vertex buffer is 

an ordered list of vertices. The index buffer defines triplets of vertex indices, each triplet 

defining a single triangle. Separating the geometry into these two buffers allows 

calculated per-vertex data (e.g. transformations) to be shared between neighboring 

triangles, improving render efficiency. However, it also has the advantage of allowing the 

index buffers to be shared between tiles of similar topology. The index lists are effectively 

independent of the actual height data as it only defines the topology or connectivity of a 

tile. By skipping some indices of vertices at a tile’s edges in a vertex index list, the 

topology of its neighboring tiles can be matched effectively. This is explained in more 

detail in Section 5.2.2. GeoMipMapping uses one vertex buffer per tile per LOD level. In 

[SNOO01], this idea is taken one step further. All height samples are stored in a single 

vertex buffer per tile, used for all LOD levels. To render a tile at any LOD level, one of 

many precalculated index lists is used. Index lists of decreasing (i.e. coarsening) LOD 

level would skip (i.e. would not use) more and more vertices. To make a tile connect 

seamlessly to its neighboring tiles, a tile is defined by two separate index lists: the body 

list and the link list. The body list represents the major portion of a tile and draws all 

triangles for given LOD level, except triangles at the tile’s edges that connect to 

neighboring tiles of a coarser LOD level. The link list fills the remaining area of a tile, 

interlocking seamlessly with both the tile’s body and the neighboring tile of a coarser 

LOD level. Consequently, only one vertex list is present per tile, and a finite number of 

precalculated index lists are stored, of which two are chosen and rendered per tile. As 

less and less vertices are used for distant, coarser tiles, cache coherency would suffer 

during rendering. This drawback can be somewhat minimized by optimizing the vertex 

order for patterns of common use. Obviously, this algorithm requires more video memory 
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than GeoMipMapping, as vertex lists must always be present in video memory at the 

finest LOD level, even for distant tiles. 

5.2.1.3 (Semi‐)fixed LOD 

Lastly, a class of algorithms has 

been devised that reuses a 

triangulated mesh and only update its 

vertex positions, but not its triangle 

layout (i.e. connectivity). 

Consequently, it offers a steady 

triangle count and rendering rate. In 

[DACH06a], the local mesh density is 

modified to decrease with density and 

increase with slope, creating a more 

uniform triangle size in screen space. 

This mesh is fixed to the camera, translating and rotating with it. Each vertex of this 

mesh is then warped on the CPU to approach the preferred local mesh density and then 

samples the heightfield at high resolution on the GPU to get the vertical component of 

each vertex. The heightfield sampling applies hardware bi-linear filtering, as the 

sampling positions are not necessarily aligned with the heightfield’s virtual grid. This 

sampling filtering prevents serious popping, but does suffer from an artifact called 

‘swimming’. Higher order filters would reduce this effect greatly but are not natively 

implemented in graphics hardware and are expensive to emulate. This algorithm is quite 

video-memory unfriendly, as it requires the complete heightfield to be accessible from the 

graphics hardware.  

 

In [LOSA04], a different approach to the camera-fixed mesh is taken. This algorithm 

uses a pyramid of different LOD levels of heightfield data near the camera’s position. 

Each pyramid’s subsequent layer halves its vertex density, but doubles the covered area. 

See Figure 5-8. To render the heightfield from the camera’s position, an world-axis-

aligned rectangular ‘ring’ of geometry is rendered per pyramid level, rendering only the 

area that is not covered by the other levels, centered around the camera. When the 

camera moves, the pyramid’s data can be updated incrementally. A moving camera will 

 
 

Figure 5-8   Rectangular geometry rings. Each of the (differently 
shaded) farther rings halves its vertex density in world space 
and is formed from a different ‘clipmap’ pyramid level. From 

[ASIR05] 
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move a virtual center position inside each layer’s vertex buffer, reusing most of its data 

and replacing only the exact data that moved out of the layer’s covered area with new 

data that just moved in at the opposite side. This is possible by treating each level’s data 

as a toroidal datastructure, wrapping around its edges, effectively making the areas that 

would move out and move in overlap. To hide vertex popping effects that would occur as 

heightfield sample points are rendered using different pyramid levels when the camera 

moves, the vertices near the far border of each ring blend to a coarser LOD level using a 

special vertex shader, similar to vertex morphing. Most of the processing is done on the 

CPU. This algorithm was improved in [ASIR05]  by moving much of the work to the GPU 

and splitting the rings into smaller building blocks, improving block reuse and frustum 

culling. This algorithm, as well as the algorithm described in [DACH06a] relies on the 

availability of vertex textures, a relatively new hardware feature that is not yet 

completely standardized. Consequently, it would require different code paths for different 

vendors.  

5.2.1.4 Selection criteria 

To render heightfields for use in a terrain editor, a render algorithm must be chosen 

and implemented. A quantitative performance comparison of the algorithms discussed 

above would be difficult to present, as most papers use different hardware generations, 

viewport resolutions and heightfield sizes to measure the frame rate of their algorithms. 

Several observations can be made, however. As mentioned earlier, a shift is taking place 

from more complex CPU-based triangulation algorithms to slightly more brute-force 

methods that are optimized for today’s GPU capabilities and strengths. This includes 

minimizing update size and frequency. To choose an algorithm to use as the basis for the 

renderer written as part of this research, the following criteria were used: 

 

1. Fast rendering. Fast rendering is important as this increases the user 

interactivity and allows more computing power to be used for actual terrain 

editing. As explained earlier, efficient use of hardware-accelerated data 

structures is the key to performance on modern PCs. 
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2. Simple data structures. As a terrain editor would need to update a heightfield 

regularly, simpler data structures with a minimum of required preprocessing 

are preferred, as these are faster to update when the terrain is modified.  

 

3. Small memory footprint. This thesis describes techniques that use video 

memory as a cache to process heightfield data other than the actual rendered 

3D heightfield geometry, making algorithms that use less system and video 

memory more preferable. See Chapter 7 and 8 for further details. 

 

4. Regular access patterns. The raw heightfield data is partitioned into smaller 

blocks, called pages, for reasons described in Chapter 7. Render algorithms 

that have less regular access patterns during geometry updates would be 

harder to optimize for paged source data access.  

 

Discrete tile-based algorithms fit the fourth criterion best, as these produces very 

regular triangulation and would only use data from one block or a group of neighboring 

blocks per tile, as the tiles themselves form a similar partition into blocks. One of the 

discussed discrete tile-based algorithms, called the GeoMipMapping algorithm, was found 

to comply best with the combination of the other three criteria. This algorithm was 

chosen and further modified to the specific needs for this research. 

5.2.2 Implementation Details 

What follows are the specifics of the modified GeoMipMapping algorithm. For a more 

in-detail discussion of the original algorithms, the reader is referred to the original paper 

[BOER00].  

 

As discussed in Section 5.2.1.2, this algorithm splits the terrain in regularly shaped 

tiles. This has several advantages. First, this allows the CPU to cull larger areas as a 

whole that are completely outside the camera’s view frustum through the use of bounding 

boxes and frustum culling on a tile basis. This prevents large chucks of the heightfield 

from being transformed into screen space by the graphics hardware before the many 

triangles that make these tiles would be culled away individually anyway. Secondly, the 

regularity of the tile’s triangulations is easily exploited by creating a single triangle strip 
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per tile for efficient rendering and by sharing the connectivity data structure (i.e. index 

buffer) between tiles for efficient memory use.  

5.2.2.1 Tile LOD Selection 

Chosen the best LOD level for each terrain tile is done using some form of heuristic or 

error measurement. The original paper GeoMipMapping paper [BOER00] uses a terrain 

roughness-dependent LOD error metric to choose each tile’s LOD level during rendering. 

These LOD levels are represented by integer values ranging from level 0 (containing 

some W x W vertices) up to level 2log W⎡ ⎤⎢ ⎥ -1 (containing only 2 x 2 vertices) for a tile 

containing W x W height samples. The original LOD error metric precalculates the 

minimum distance at which the maximum difference in screen space between vertices of 

a reduced LOD level and the finest LOD level reaches a specified pixel error, assuming 

the terrain is always viewed from aside. This metric is evaluated and stored in a lookup 

table during tile creation for each individual tile at each possible tile LOD level. As this 

requires calculating the maximum of all vertex errors per LOD level, this lookup table 

would need to be recalculated when the terrain is edited. As this thesis is concerned with 

editing terrain, all overhead by preprocessing terrain should be minimized as much as 

possible. For this reason, a simpler error metric has been chosen. Instead of assuming the 

terrain is always viewed from aside, as the original paper did, it is assumed it is always 

viewed from above. This actually might fit this thesis’s usage pattern slightly better, as 

terrain editing is typically done from a bird’s eye view instead of viewing the terrain from 

off the ground. Disregarding projective distortion, this metric is independent from the 

terrain roughness. Consequently, the LOD level for each tile is made to only depend on 

the camera’s parameters and distance. To support rendering to multiple viewports, this 

formula can be evaluated once per viewport/camera pair, picking the finest LOD level 

found. 

tan( )fa
h

adL e
s

=

=
 

Here, f and h represent the camera’s field of view and viewport’s width in pixels, 

respectively. This makes a approximately the size of one world unit perpendicular to the 

camera per screen pixel per world unit in the direction of the camera (i.e. per pixel per 
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unit distance). s is the fixed world distance between neighboring height samples in the 

tile, or the grid cell size. d represents the distance between the camera position and the 

closest point on the axis-aligned box formed by the tile’s position, size and full height 

range. Assuming the heightfield is viewed from above, ad/s is the (maximum) amount of 

grid cells per pixel. e is the maximum allowed screen ‘error’ in pixels. Ideally, exactly one 

vertex per block of e x e screen pixels would be rendered. L represents the number of 

height samples per e pixels. Hence, the coarsest LOD level that renders at least one 

vertex per L height samples is chosen. Each subsequent higher LOD level effectively 

halves the resolution of a GeoMipMapped tile. Obviously, some camera distances to a tile 

will result in a sudden change of LOD level. Slightly moving or rotating the camera near 

these distances can cause the tile to oscillate between LOD levels. To prevent this, a tile’s 

active LOD level is only made to change when the ideal LOD level is outside the range [k-

, k+1) instead of [k, k+1), k being the currently active integer level and  being some 

small value (e.g. 0.2). Tile LOD updates are queued, updating only a limited number of 

tiles per frame to amortize large changes over multiple frames. 

 

The camera-tile distance d can be calculated by (( ) ( ))tcamera tile camera tileP P P P− • −  with t = 

0.5. By (slightly) increasing t, a practical bias can be created that decreases the LOD 

level for distant tiles even further. This might be desirable when editing terrain from 

close by, preferring frame rate over more precise rendering of distant, less relevant 

terrain. Both e,  and t can be made adjustable in real-time to accommodate for different 

user preferences, hardware and editing situations. 

5.2.2.2 Tile Triangulation 

A heightfield of M x M height samples will be split into tiles that cover N x N grid 

cells, requiring (N+1) x (N+1) height samples per tile. Note that the algorithm does not 

require the heightfield and tiles to be square, but this simplifies the notation presented in 

this section and would often be the case in practice anyway. If M is not divisible by N, the 

most right column and most bottom row of tiles that make up the heightfield only cover 

the remaining area. See Figure 5-7. Of course, each border of a rendered tile should 

connect to the opposite border of each neighboring tile. This requires the height samples 

at the borders of a tile to be used both by the tile itself and its neighboring tile. Described 
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in symbols, there are /M N⎡ ⎤⎢ ⎥  x /M N⎡ ⎤⎢ ⎥  tiles and tile (u, v) uses the height samples at 

[ , ] [min( , ( 1)),min( , ( 1))]N u N v M N u M N v⋅ ⋅ − ⋅ + ⋅ +  to create its mesh from. Note that 

the 2D height sample coordinates are in 2D space and actually represent row and column 

indices, counting from 0 and up, while the origin is at the top left corner. This is similar 

to texture UV space but uses a different scale (in texture UV space, the coordinate (1.0, 

1.0) would represent the bottom right corner). In Figure 5-7, the camera would be near u 

= 0, v = 50. 

 

The tile triangulation 

scheme will be explained using 

the example depicted in Figure 

5-9. In this example, a camera 

would be located near the 

center of the figure (at E), 

causing the LOD levels 

(denoted as L0-L2) to increase 

(and thus coarsen) from the 

center outwards. As the tiles 

cover 9 x 9 heightfield grid 

cells, 100 height samples are 

used per tile. The triangulation 

process is best explained as a 

three-step process. 

 

First, the tile is split into quads (i.e. quadrilaterals). At the finest LOD level (L0 in the 

figure), a tile consists of 9 x 9 quads. Each subsequent LOD level will merge 2 x 2 quads 

into one quad. However, if the amount of quads in a tile at the previous LOD level isn’t 

divisible by 2, the (bottom/right) remainder will not be merged. Consequently, LOD level 

1 through 4 in the example will consist of 5 x 5, 3 x 3, 2 x 2 and 1 x 1 quads, respectively.  

 

Secondly, each quad is split into two triangles. For this implementation, a regular 

triangulation has been chosen (Figure 5-3, left image), as this simplifies batching all 

triangles in a tile into a single triangle strip. The diagonal split edge has arbitrarily been 

chosen to go from the top left to the bottom right of each quad. 

 
 

Figure 5-9   GeoMipMap tiles using 9x9 grid cells per tile for a 28x28 
heightfield 



Effective GPU-based synthesis and editing of realistic heightfields – G.J.P. de Carpentier 41 

 

Lastly, the triangles that touch the border of a neighboring tile that has a lower LOD 

level are modified to match the layout of these neighboring triangles. This process is 

depicted in Figure 5-9 by the arrows, each replacing a vertex for a dotted-lined triangle 

with another vertex. This replacement process prevents having potential gaps and T-

junctions between neighboring tiles. This replacement can be accomplished by rounding 

the heightfield sample UV coordinates at the tile’s border to the first sample coordinate 

on the border that is used by the neighboring tile with a higher LOD level. This can be 

implemented using simple bit operators due to the power-of-two nature of the LOD levels. 

Note that tiles that have a higher LOD level than all their neighboring tiles are not 

modified in this step. As a result of the vertex replacement, some of the modified become 

degenerate (zero-area) triangles. Even though keeping degenerate triangles induces a 

small cost when rendered, the alternative of removing these triangles can be more costly; 

breaking the regularity in triangulation would either shorten triangle strips or create the 

need for more complex (and possibly slower) triangulation techniques. Either way, the 

overhead incurred by keeping these degenerate triangles is relatively small anyway, as 

there are relatively many more non-degenerate triangles than degenerate triangles in 

reasonably sized tiles. Moreover, most modern graphics cards handle degenerate 

triangles very efficiently. 

5.2.2.3 Resource Sharing 

Triangles are rendered most efficiently when using 

indexed triangle strips. This is a variation on the 

indexed triangle list, mentioned in 5.2.1.2. To render 

an indexed triangle strip, two buffers are used. The 

first buffer, called the vertex buffer, contains the 

position of each vertex.  The second buffer, called the 

index buffer, is a list of indices referring to ordered 

vertices in a vertex buffer. When rendered as a 

triangle strip, the first three indices in an index list 

define the three vertices of first triangle. Each subsequent index is used together with the 

previous two indices to form yet another triangle. Consequently, a list of k indices will 

render k - 2 triangles, making triangle stripping very memory efficient. The triangle 

 
 

Figure 5-10   Example of triangles to be 
‘stripped’  using alternate winding orders 
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indexing is performance efficient because the vertex sharing allows for sharing of vertex 

transformation output between neighboring triangles. The winding order, used for back-

face culling, of triangles in a strip is alternated for each subsequent triangle. For 

example, in Figure 5-10, the two triangle index buffers for the two rows would consist of 

4-0-5-1-6-2-7 and 8-4-9-5-10-6-11. To merge multiple rows of triangles into one strip, 

some indices can be repeated and inserted between the strips to create transitional, 

degenerate zero-area triangles, moving the sequence from the bottom-right of one row to 

the top-left for the next.  For example, in Figure 5-10, the combined triangle index buffer 

would consist of 4-0-5-1-6-2-7-3-3-8-8-4-9-5-10-6-11, inserting 7-3-3, 3-3-8 and 3-8-8 and 

8-8-4 as degenerate triangles. Although the addition of these triangles does not come for 

free, it is still faster than having one strip (and, hence, one render call) per row of 

triangles. 

 

Another advantage of the separation of connectivity data (the index buffers) and the 

geometry data (the vertex buffers) is the potential for reuse. As can be seen from Figure 

5-9, the tiles A, C, G and I have similar triangle layouts. As index and vertex buffers can 

be bound separately to a render call, this separation can be made to exploit the tile 

similarity to increase memory efficiency. For example, by ordering the vertices in tiles A, 

C, G and I in the same way, the index buffer can be shared between these tiles. This is 

also true for tiles B and H and for tiles D and H. For this to work, one vertex buffer is 

created per tile, consisting of all vertices in scan-line order appropriate for its current 

LOD level, independent of neighboring LOD levels. This vertex buffer must be updated 

when either the tile’s height samples are modified or when its LOD level changes. 

However, the index buffer can be shared between tiles that would have identical tile 

connectivity (i.e. the tile’s triangle layouts would be the same). This is the case when two 

tiles have identical LOD levels and have identical (or finer) LOD levels for their four 

neighboring tiles. As vertex buffers are independent of neighboring tile LODs, some 

vertices will be left unused during rendering when a tile has a neighboring tile with a 

coarser LOD level, as specified in the used index buffer. This way, one vertex buffer is 

required per tile per LOD level and one index buffer per own/neighbor LOD level 

combination. 

 

Even this could be extended by having only one vertex buffer per tile, independently of 

LOD levels, by letting the index buffers of higher LOD levels skip over more and more 
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vertices. However, this would mean that all vertices (and thus, all heightfield samples) 

would need to reside in video memory. In contrast, requiring a different vertex buffer for 

each LOD level and keeping only the current LOD level’s vertex buffer in memory will 

result in much smaller vertex buffers for distant tiles. Furthermore, skipping over many 

vertices also has a negative effect on performance on modern hardware as this would 

result in many unnecessary vertex transformations and cache misses unless the vertex 

ordering is optimized for such usage. Another tradeoff is the required preprocessing time. 

By not using this last extension, the vertex buffer will need to be recalculated every time 

the LOD level changes due to camera movement, but as there are many more tiles at 

coarser LOD levels than finer LOD levels for a large terrain, the average vertex buffer 

size per tile is relatively small. Also, editing terrain at some distance would only require 

updating vertex buffers at reduced resolutions. When using the extension, however, 

camera movement would no longer require updates to vertex buffers when the camera 

moves some distance, but it would require the vertex buffers to always be updated at the 

highest LOD level when the terrain is modified. The tradeoffs between update time and 

speed, together with the much larger memory requirements make this extension less 

preferable for this research than having a tile’s vertex buffer be LOD-dependent. 

 

Another way to exploit the regularity in heightfields is the possibility to split the 

vertex buffer into two separate vertex buffers: an XZ vertex buffer and a Y vertex buffer 

(with Y being the vertical component).  As can be seen in Figure 5-9, not only the 

connectivity of tiles like A, C, G and I is identical, the vertex position themselves are 

identical as well in this top-down projection on the XZ plane, apart from a 2D 

translational offset per tile. As modern hardware supports complex vertex shaders that 

are able to combine information from different streams and variables, the XZ components 

of each vertex can be shared between tiles that use the same LOD level, while the Y-

component vertex buffer (i.e. the actual height sample values) is truly unique to each tile. 

For large terrains, the total number of tiles is much larger than the total number of LOD 

levels. Hence, memory requirements are effectively reduced to one third. See Figure 5-11.  



Effective GPU-based synthesis and editing of realistic heightfields – G.J.P. de Carpentier 44 

-dep. on: own LOD level
XZ vertex buffer

-dep. on: own LOD level
XZ vertex buffer

-dep. on: tile's LOD level
-dep. on: neighbors' LOD levels

Index buffer

-dep. on: tile's LOD level
-dep. on: neighbors' LOD levels

Index buffer

Tile index buffer manager

Tile XZ vertex buffer manager

-dep. on: tile's LOD level
-dep. on: heightfield data

Y vertex buffer

Heightfield data (Main memory)

Graphics 
processor

-dep. on: own LOD level
XZ vertex buffer

1
*

-dep. on: tile's LOD level
-dep. on: neighbors' LOD levels

Index buffer

1
*

-XZ vertex buffer stream @ 4 Bytes/vertex1

1

-index buffer stream @~4 Bytes/vertex

1
1

-Y vertex buffer stream @ 2 Bytes/vertex1

1

Tile transform matrix11

Vertex program11

 
 

Figure 5-11   Components required to render a tile 

Using only shared 2 x 16-bit XZ values and unique 16-bit Y values relative to the top-

left position of each tile while scaling and offsetting these values in the vertex shader, the 

vertices can be compressed to a fraction compared to a naïve uncompressed 3x 32-bit 

floating point implementation, approaching one sixth of the original vertex data 

(assuming the total number of tiles is far greater than the number of LOD levels). 

 

One parameter of the algorithm that must be chosen carefully is the tile size N. An 

index buffer can be specified in 16-bit or 32-bit indices. As the maximum number of 

vertices that can be addressed from a 16-bit indices is 216, 32-bit indices are required for 

LOD levels that would need more than 256 x 256 vertices. So, less 16-bit index buffers 

will be used for larger tile sizes. These 16-bit buffers are both smaller and faster to 

process in hardware. Furthermore, smaller tiles can be culled more precisely by the 

viewing frustum, reducing overhead. Smaller tiles have another advantage. As tiles are 

always updated as a whole, heightfield modifications that are relatively small to a tile 

waste processing power and bandwidth. So, smaller tiles means less updating overhead 

for small modifications. As there can only be 2log N⎡ ⎤⎢ ⎥  LOD levels for a tile size of N x N, 

larger tiles will offer more LOD levels. This means that (very) distant tiles will 

potentially be rendered with unnecessary detail when tiles are too small. Also, modern 

hardware can only approach its maximum triangle throughput when the triangles are 

batched together in as less render calls as possible, making larger tiles more preferable. 

The optimal tile size has been decided on by experimentation. As can be seen in Figure 
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5-12, the render frame rate was found to be highest near N = 200. Note that this frame-

rate is hardware dependent and future graphics hardware will probably perform better 

with even larger tiles. For this research, N = 192 has been chosen, which is the exact N 

with the highest fps in the figure. The frame rate is also dependent on the maximum 

allowed tile screen error e. As mesh density in both X and Z direction is directly related to 

e, a quadratic reciprocal relation between e and the frame rate is expected. This relation 

can also been observed from the experimental results presented in Figure 5-13. The 

results shown in Figure 5-12 and Figure 5-13 were obtained using an Intel Core 2 Duo 

2.0Ghz and NVidia Geforce Go 7950 GTX 512 MB system.  
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Figure 5-12   Frames per second, rendered triangles and 
rendered tiles as a function of (square) tile size. The data 

points are averaged values, measured from multiple camera 
positions with e = 3 @ 1024 x 768 
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Figure 5-13   Amount of rendered triangles as a function of the 
maximum pixel error. The data points are averaged values, 

measured from multiple camera positions @ 1024 x 768 
 

5.3 Terrain Texturing 

To make interesting rendered images of any type of geometry using modern 

programmable graphics hardware, geometry (i.e. the triangle meshes) will have surface 

properties assigned to it. In general, these properties consist of local mapping parameters 

(i.e. the texture mapping) and a pixel shader. The shader uses the local parameters, the 

camera direction, the local geometry and possibly multiple input images (called textures) 

and other parameters to calculate the color of each covered screen pixel. Surface shading 

might be as simple as outputting an evenly lit projected texture on a surface or as 
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complex as procedurally generating animated natural phenomena (e.g. rendered 

reflective caustics of a water surface). Lighting calculations can be balanced between 

vertex shaders and pixel shaders to get per-vertex and per-pixel effect, respectively. As 

there are generally less vertices than pixels rendered at any time, it is often faster to 

calculate effects in the vertex shader. 

 

When a heightfield is to be used in a real-time engine, this heightfield will generally 

be rendered as a set of triangles. Simply assigning uniform colors to these polygons will 

not create very convincing images. Photorealistic textures can be assigned instead to 

increase the visual resolution of the material the terrain is made of. Typical textures 

include images of mud, snow, dirt, sand, grass and rock. These terrain textures can be 

created by artists from edited photographs or might even be generated procedurally.  

 

The exact terrain tessellation and geometry rendering technique can differ per game 

engine. However, the input to these algorithms is typically always the same: a 2D matrix 

of height values. Terrain texturing, on the other hand, is much less standardized. 

Different techniques require different types of data and vary in realism and complexity. 

An editor that can be used to aid in the process of texturing the terrain would, for 

example, support brushes and parameters to paint or procedurally assign different 

textures to different areas, respectively. As this research is mainly concerned with 

heightfields synthesis and editing, and not with texturing for one specific engine, 

texturing techniques are less relevant. However, a terrain editor requires some form of 

lighting and texturing to give more context to the edited heightfield.  

 

The testbed was fitted with a procedural texture mapping implementation of its own. 

This method somewhat resembles the possibilities of some of the more modern engines 

and can be used to visually approximate the texturing of these engines. Because the 

obtained results were found to be quite good and interesting, the details of this texturing 

method are discussed in some detail this chapter. To create a more complete context, 

several texturing techniques found in practice are discussed first in Section 5.3.1 before 

the details of the implemented texturing method is discussed in Section 5.3.2. That last 

section also includes a technique to hide a common texture distortion artifact found in 

heightfield-rendering games. Although it is expected that some newer renderer 

implementations use a similar technique to tackle this problem, it is worth discussing 
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some of its details, as no other literature has been found during this research that covers 

this solution.   

 

As texturing itself is not enough to create appealing scenes, a lighting model is 

typically applied by a game engine as well. As these lighting models are even more 

engine-specific, only the testbed’s implementation is discussed in some detail in Section 

5.3.2.3. 

5.3.1 Texturing Techniques 

What follows is a survey of different texturing techniques found in practice with 

different tradeoffs between speed, detail and flexibility. This section creates a base and 

context for the discussion on the testbed texturing implementation found in Section 5.3.2. 

  
 

Global texturing 
 

Global + detail texturing 
 

Figure 5-14   Global texturing with and without detail texturing 

5.3.1.1 The Global Texture 

The simplest texturing technique is analogous to the idea of heightfields. A single 

color image (i.e. texture) is assigned 1:1 to the whole terrain using a vertical orthographic 

projection. Obviously, the disadvantage of this technique is memory usage, as using 

images that consist of more than only a few color samples per height sample are 

prohibitively memory intensive. It might suffice for flight simulators, thus rendering the 

terrain from a great distance, but produces poor imagery for applications that show the 

terrain from only a few meters above ground level. Also, creating a global texture can be 
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difficult to do by hand. However, when the used heightfield is actually a realistic model of 

real existing terrain, an aerial photograph might be used instead. See Figure 5-14. 

5.3.1.2 Detail Texture 

A fast and simple improvement of the previous technique is the use of an additional 

detail texture. A detail texture is a high-resolution texture of a small patch of terrain. 

This texture is typically tiled (i.e. repeated) at every heightfield quad and blended 

additively or multiplicatively together with the global texture. This will give the global 

texture a high-resolution look to it. The disadvantage is that different types of ground 

materials (represented by the different colors in the global texture) will use the same, 

globally-applied detail texture to improve visual resolution. This could result in, for 

example, strange looking patches of green grass (from the global texture) with a rock-like 

fine detail look (from the detail texture). See Figure 5-14. 

5.3.1.3 Quad Texture 

One way of introducing detail that 

matches the material type (e.g. rock and 

grass) is to assign a single detail texture 

from a small, fixed set of detail textures 

to each heightfield grid cell. This can be 

implemented by replacing or extending a 

global texture to assign a number to each 

cell, indexing into an array of detail textures. Of course, changing the texture per quad 

will create visible texture seams unless carefully constructed transition textures are 

placed between adjacent quads of different material types. See Figure 5-15. This 

technique can be interpreted as a 3D application of classic 2D arcade-style sprite tiling. 

Another (or combined) global color texture might be used to blend with the quad 

texturing to introduce some subtle variance in the color, hence hiding the repetitiousness 

of the detail textures somewhat. Requiring at least one transition quad between different 

types of terrain might result in too smooth transitions in some rapid-changing situations. 

 
 

Figure 5-15   Quad texturing without transitions. Note the 
seams between the rock and grass texture. From [DEXT05] 
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The number of transition textures is quadratic in the number of different terrain types, 

becoming the limiting factor.  

 

Wang tiling can be considered to be a special case of quad texturing. There, tiles (i.e. a 

texture per heightfield quad) are selected and assigned from a minimal set of carefully 

constructed tiles to effectively create an aperiodic tiling pattern [STAM97]. See Figure 

5-16. Edges of the tiles in this set are said to be color coded and need matching edge 

colors with their neighbors, much like dominos, when laid on the heightfield in order to 

create a seamless result. A set of recursive production rules is responsible for the actual 

tiling. Although aperiodic tiling greatly reduces the visual repetitiveness of a texture, it 

isn’t clear how to adapt this to use multiple base textures including transitions between 

these (e.g. grass and rock).  

  
 

Standard, periodic tiling 
 

Aperiodic tiling 
 

Figure 5-16   Example of standard tiling and aperiodic Wang tiling. From [STAM97]  

 

5.3.1.4 Texture Splatting  

Splatting can be seen as an extension 

to quad texturing, using automatic 

blending of different textures. Transitions 

and material blending (e.g. 20% sand and 

80% dirt) are done in real time by 

calculating a position-dependent 

weighted average of different material 

textures. These weights are assigned per height sample, typically using a texture for 

weight look-ups during rendering [BLOO00] [DEXT05]. See Figure 5-17. Typically, only a 

 
 

Figure 5-17   Splat texturing. Compare to 
Figure 5-15. From [DEXT05] 
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few materials are blended locally at once because blending too many textures together 

will result in a muddled appearance. But over larger distances, many other materials 

might be found. Storing the blending weight for all possible materials per vertex, of 

which many weights would be zero, would require a lot of memory. Partition techniques 

can be applied to store only the non-zero weights of textures actually used at different 

(rectangular) areas of the terrain, resulting in considerable memory conservations. 

Although the splatting technique can introduce variation through subtle weight 

perturbations to hide patterns of (identical) texture repetition, Wang tiling could be 

applied to hide these patterns further. However, its advantage might be outweighed by 

the increase in difficulty to create a Wang tiling set for each base texture and the 

increase in algorithm complexity and storage requirements to use Wang tiling. 

 

Quad texturing is currently the algorithm used by most game engines, albeit with 

different numbers of supported textures, partitioning techniques and editing capabilities. 

For example, some engines support brushing weights onto the terrain, others support 

more automated methods, as described next. 

5.3.1.5 Procedural Splatting 

The splatting algorithm can be extended to calculate blend weights based on 

geometry. This simplifies texturing from manual per-sample weight assignments to 

tweaking parameters to the procedural calculation. Of course, the output of these 

calculations might be blended or overwritten by some manual value where more control 

is necessary. However, results obtained solely by procedural calculations can be quite 

believable for a good reason: the soil type, snow line and undergrowth in real terrains on 

earth are typically themselves influenced by the underlying geometry. Geometry-based 

inputs for procedural texturing that can easily be evaluated, like the local altitude and 

slope, are often found to be enough when combined with some randomness to create 

believable texturing. Other, more complex inputs can be used as inputs as well. In 

[HAMM01], more factors that influence the local sun, wind and rain conditions are used: 

soil type and erosion (e.g. soft sediment or hard rock), temperature, absolute height 

(height above sea level), local relative height (local valleys generally contain more water 

and are more sheltered), slope steepness and slope direction. The procedural weight 

calculations can be done either off-line or on-line. For off-line calculation, the calculated 
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results still need to be stored explicitly. On-line calculation can be implemented either to 

be calculated by either the CPU or GPU during rendering.  

 

The procedural techniques are typically based around layers of 

textures stacked on top of each other, with each layer determining 

its own opacity. This is somewhat intuitive, as snow, for example 

can be stacked upon grass, which, in turn, can be stacked on top of 

sand. The designer is expected to define these layers. One possible 

layer stack is depicted in Figure 5-18. The ordering of layers is 

important since blending material A with B will generally not be identical to blending 

material B with A. For example, when the ‘higher’ layer of the two has 100% opacity, the 

‘lower’ layer will be completely covered, independently of the opacity setting of this lower 

layer. An example of a layered set of materials can be found in Figure 5-18. When these 

specific layers would be used, the grass texture will always be placed on top of the sand 

texture. Also, any rock texture can only be visible when the weight of ‘snow’ is locally 

smaller than 1.0. Some implementations allow a hierarchical parent-child system, where 

the local opacity of child layers is multiplied by the opacity of their parents. In effect, a 

texture assigned for a child layer will only be visible when both parent and child locally 

have a non-zero weight assigned. Therefore, the ‘Long Grass’ child in the example above 

could only be visible where its ‘Grass’ parent has a non-zero opacity.  

5.3.2 Implementation Details 

The previous section discussed many different texturing techniques. The exact 

available technique(s) depend(s) on the technology supported in game. Consequently, 

visual fidelity, storage requirements, editing flexibility and labor intensiveness offered in 

a (terrain) editor are dictated by the underlying texturing implementation.  

 

A subset of texturing ideas and practices has been implemented in the testbed 

implemented for this research. The focus of this research lies with heightfield synthesis 

and editing. As there isn’t one standard format in terrain texturing and the testbed isn’t 

created around a single application (e.g. engine), creating texturing that would 

interoperate easily with other applications in a tool chain was not viable. Consequently, 

 
 

Figure 5-18   Example of a 
user-defined material layer 

hierarchy 



Effective GPU-based synthesis and editing of realistic heightfields – G.J.P. de Carpentier 52 

the texturing output that is available in the testbed will not be interchangeable with 

other applications.  

 

Still, the testbed texturing can be used to approach the result of terrain renderings in 

a target application by supporting a simple material editor, splatting techniques, 

controllable procedural texture weight assignment and the ability to load and save 

settings. This is important for several reasons. As texturing can visualize semantics (e.g. 

cliff at steep areas, snow on mountain peaks) and fake geometry detail (e.g. cracks in rock 

textures), even a rough approach of the desired texturing can give more context to the 

geometry. Also, good texturing and lighting results in an increased perception of depth, 

helping users to better interpret the rendered imagery. 

5.3.2.1 Texture Splatting 

At the implementation’s basis lies a four-layer texture splat pixel shader that can be 

controlled from the material editor. Having exactly four layers is a compromise between 

rendering speed and flexibility, without requiring more complex and precalculation-

intensive area partitioning techniques. The textures for each layer can be chosen freely. 

Examples of such layer textures are snow, rock, grass, sand and dirt images. The local 

weights of the different layers are a procedurally calculated mix of local height, slope and 

noise.  

 

These weights are calculated in the terrain pixel shader itself, using a packed format 

of user parameters. Note that only the texture blend weights are calculated procedurally, 

not the textures themselves. As described in Section 5.2.2.3, the vertices that make up 

the terrain geometry are split into a shared XY component tile vertex buffers and unique 

Y component tile vertex buffers. To be able to calculate light influences and slope-

dependent  texturing for this implementation, the Y tile vertex buffers are appended with 

directional information. Directional vertex information is commonly represented as 3D 

‘normals’, defined as normalized vectors that are perpendicular to the local mesh patch. 

However, in the case of heightfields, a 2D ( , )y y
x z

δ δ
δ δ

 gradient vector is more memory 

efficient. Each vertex is chosen to consist of one 4D vector: one height component, two 

gradient components and one spare component. In the terrain vertex shader, the gradient 
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is transformed into a 3D normal. During rasterization, this information is interpolated 

over the terrain’s triangles and passed on to the terrain pixel shader. The pixel shader 

uses this normal for lighting calculations and slope-dependent texture weighting. A ‘Y’ 

vertex buffer is recalculated when either the LOD level changes or the terrain is locally 

modified. The gradients contained in this vertex buffer are calculated as follows:  

, 1, , , 1( , ) ( , )x y x y x y x y
y y H H H H
x z

δ δ
δ δ − −≈ − −  

with H being the heightfield matrix. This will give only a rough approximation of the 

actual gradients, but it is also very fast. For the application of terrain editing, this 

tradeoff makes sense: terrain update speed is considered more important than rendering 

accuracy.  

 

 
 

 
a) 
 

 
 

 
b) 
 

 
c) 
 

 
d) 
 

 
e) 
 

 
f) 

 
Figure 5-19   Testbed heightfield texturing breakdown. a) Only lighting. b) Only one texture layer. c) Lighting and texture layer 

combined. d) Multiple lighted texture layers with height-dependent weight assignment. e) Height and slope-dependent 
assignment. f) Height, slope and noise-dependent assignment 
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5.3.2.2 Texture Projection 

As described earlier, 

texturing needs a projection to 

map 3D world positions to 2D 

texture coordinates. 

Traditionally, an orthographic 

vertical projection is used for 

heightfields. However, very 

steep terrain will then stretch 

textures that are vertically 

projected, as can be seen in 

Figure 5-20a. This effect can 

also be seen in many (slightly 

older) games. The vertical 

projection projects a pixel’s 3D 

coordinates on the heightfield’s 

horizontal XZ plane to get a 

texture’s 2D UV coordinates.  

 

A more complex texturing technique has been implemented which can be chosen 

instead of the standard projection. This gives the user a tradeoff between performance 

and visual output. The extended texturing technique works by projecting the 3D 

coordinates not only on the XZ plane, but also on the XY and YZ planes. These three 2D 

coordinates are used to do three independent texture lookups in the pixel shader for each 

layer. Next, the looked-up texture colors are combined using a weighted sum: 

 

'

'
'

x x

y y

z z
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where N  is the local normal vector and Cyz, Cxz and Cxy are the three sampled texture 

RGB colors, represented as 3D column vectors. For flat terrain, this simplifies to C = Cxz, 

 

 
 

a) Standard vertical projection 
 

 
 

b) Normal-weighted X, Y & Z projection 
 

 
Figure 5-20   Effects of standard and extended texture projections on 
differently sloped shapes. Please note that the diamond-shaped color 

gradients in the applied texture have no particular meaning 
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as expected. For steeper terrain, the horizontal projections will start to dominate the 

blend, effectively hiding the stretched texturing of Cxz. Obviously, this method of 

texturing uses three times more texture look-ups in the pixel shader than the more 

standard vertical projection implementation and can have a significant effect on the 

frame rate. Instead of the component-wise multiplication in N’ , N’’ could also have been 

defined as a component-wise abs(N). However, multiplication has the effect of increasing 

the relative weight of the most dominant axis and decreasing the relative weight of less 

dominant axes. This is desirable because blending too many textures together creates an 

overall muddled look. As can be seen in Figure 5-20b, using a blend of multiple 

projections effectively eliminates texture stretching. Note the smooth transitions in the 

leftmost shape. 

5.3.2.3 Lighting 

Obviously, texturing itself is not enough to produce (nearly) photo-realistic images; a 

lighting model must be applied as well. Sun light interacts with the atmosphere and 

terrain in a complex way. Complex models exist that approximate atmospheric 

scattering, soft (area) sky lights and interreflections on the terrain. Atmospheric 

scattering can be reasonably approximated in real time [ONEI05] [WENZ06]. Area light 

and interreflections are much more difficult to calculate and are currently still beyond 

the reach of hardware accelerated real-time graphics. Fairly exact models can, however, 

be precomputed using general techniques like radiosity solvers [GORA84]. Slightly less 

exact models exist that only consider direct lighting and occlusion. These precomputed 

results can be stored as direction-independent ambient occlusion factors or direction-

dependent structures like horizon maps [MAX88], spherical aperture caps [OAT06] and 

spherical harmonics [SLOA02]. These data structures can then be used in real-time.  

 

Obviously, for the purpose of terrain editing, it is considered a bad idea to calculate 

expensive lighting interaction in an elaborate preprocessing step every time the terrain is 

modified. And as photo-realistic rendering is less important during editing, it makes 

sense to use a simpler lighting model that does not need preprocessing. Consequently, a 

relatively inexpensive lighting model is proposed and has been implemented in the 

testbed.  
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Humans are very good at 

interpreting lighting and shading 

hints in images of 3D objects (e.g. 

terrains) to better understand 

their shape. Rendering virtual 

terrain without any lighting would 

create very flat looking imagery 

that is hard to interpret, especially 

when the terrain is textured with 

similar looking images. Compare 

Figure 5-19b and Figure 5-19c. 

Subtle differences in color and 

lighting, as well as atmospheric 

scattering, depth of field and fog 

convey the illusion of depth. The 

main purpose of the proposed 

lighting model is to create images 

that look as good as can be 

expected from simple, non-preprocessed data and show as much visual definition (i.e. 

illusion of depth) as possible.  

 

 As terrain receives light from both the sky and the sun in realistic situations, terrain 

that faces the sun should be lighter and more yellow and terrain that faces away from the 

sun will have a darker, more blue-grayish shade to it. One way of accomplish this effect 

to calculate the following: 

 

max( ,0)
(1 )light sky sun

combined light texturing

N L
C C C
C C C

α
α α

= •

= − +

= ⋅

  

 

where N is the local normal unit vector and L is the unit-vector in the direction of the 

sun. Ctexturing is the color from the texturing step, as defined in Section 5.3.2.2. This 

calculation is done per pixel in the pixel shader. The formula is a variation on the 

standard ambient/diffuse directional light model. N can be calculated as follows:  

 

 
 

a) Standard diffuse lighting: s = 1 
 
 
 

b) 
b) Exaggerated lighting: s = 10 

 
 

Figure 5-21   Effects of standard and exaggerated slopes for lighting 
calculations. Note that differences are most visible at nearly flat areas 
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For standard lighting, s should be 1. However, when s > 1, slopes are considered to be 

s times steeper during lighting calculations. As the slopes will be exaggerated, so will the 

lighting output.  There is no actual physical model that would support this idea, but 

using larger values for s can help to give the terrain more visual definition at nearly flat 

areas. See Figure 5-21. The testbed implementation offers an option to the user to set s.  

 

One way of modeling the effect of atmospheric scattering and fog is as follows: 
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Here, Cfog is the color of the sky in the distance and would normally be close or 

identical to Cfog but is offered as a separate variable for increased flexibility. f controls the 

density of the fog and d is the distance to the camera. More complex models do exist, but 

this more standard computer graphics implementation is fast and simply looks good 

enough for our purposes. 

 

A simple way to increase the visual definition on a 3D image is set the light source 

(e.g. the sun) at a low angle, in a direction that is somewhat perpendicular to the 

camera’s viewing direction. So to get the best lighting during editing, it should be easy to 

change the lighting conditions when the camera changes direction. For this reason, the 

user can change the sun’s height and direction in the testbed by moving the mouse while 

holding only one key.  
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6 Heightfield Editing Techniques 

This section presents a survey of techniques that are found in literature and used in 

current terrain editor applications. Simple, low-level brushes are discussed in Section 6.1. 

These are found mostly in interactive game editors. Examples of these low-level brushes 

are mouse-controlled local vertical heightfield pushing, pulling and leveling operations 

that operate at a specified location within a specified radius. Deforming terrain with 

brushes is intuitive, but as the brushes use simple shapes, it is difficult and time-

consuming to create complex, natural scenes with these. 

 

Terrain deforming simulations are discussed in Section 6.2. Also, procedural 

techniques are discussed in Section 6.3, followed by more specific ‘building block’ noise 

functions in Section 6.4. Procedural algorithms attempt to capture the complexity of 

natural terrain mathematically, while being faster to calculate than actual simulations. 

Some of the currently available level edit tools allow some form of procedural terrain 

synthesis. Having such a tool helps a designer to create a rough outline of the whole 

terrain required for a game level with great ease. However, these tools only offer global, 

high-level parameters, which generate a whole terrain at once, making it hard to control 

exact placement of different desired landscape features (e.g. mountains and lakes) 

throughout the landscape. Typically, parameters are set, and the whole terrain is 

generated after waiting somewhere between a few seconds and a number of minutes. 

Even if one feature (e.g. a mountain) is generated to the liking of the designer by 

tweaking procedural parameters, it is very unlikely that all other simultaneously 

generated features in that generated landscape are more or less exactly as planned.  

 

Therefore, when a designer requires somewhat exact placement of specific features at 

specific locations he has no other choice than to use the only other set of tools that is 

typically available to further sculpt the procedurally generated rough outline: the low-

level brush tools. However, once manual changes have been made to a terrain, the high-

level synthesis tools are no longer of use; applying synthesis algorithms would otherwise 

overwrite all manual changes. 

 

Sections 6.1 to 6.4 cover techniques and algorithms found in current applications. 

Section 6.5 and 6.6 offer several ideas to overcome the current difficulties described 
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above. This includes use of brushes for more complex operations, the use of layers and 

support for different blending operations. Many of these ideas are inspired or directly 

translated from other disciplines, like 2D image editing application. This was already 

hinted at in Section 2.2. Section 6.7 offers a short evaluation of the current and suggested 

techniques and discusses the need for efficient implementations of these techniques, to 

which a solution is explored in the remainder of this dissertation. 

6.1 Low‐level Brushes 

Starting with low-level editing, this section gives an overview of the (only) terrain 

editing tools that are commonly available in today’s level editor applications. These are 

typically used inside an application environment that is able to render a 3D preview of 

the level at real-time. The mouse is used to designate the circular area a tool should work 

on. Typically, a tool radius can be chosen to vary the size of the selected area. Other 

options include the tool strength (e.g. amount of change per time unit) and the shape of 

any strength falloff towards the boundary of the circular area. Then, the terrain is edited 

by repeatedly changing the editing tool type and its options and then ‘painting’ or 

‘brushing’ with these tools by dragging the mouse. Of course, mouse simulating hardware 

like drawing tablets can transparently be used instead if preferred. Typical tool brushes 

are: 

Vertical push and pull  

These two tools simply slowly decrease and increase the height values that are 

currently under the selected circular area, respectively. 

Smoothing 

A simple low-pass filter is slowly applied to the height values inside the 

the selected area over time. Smoothing can be used to smooth out areas that are too 

rough. 
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Leveling 

This drag tool sets all height values inside the (dragged) selected area to  

the height value that lied at the center of the selected area when the tool 

 was activated (e.g. the left mouse button was first pressed). This is  

typically used to level (i.e. bulldoze) streets and the areas surrounding 

 buildings. 

Contrasting 

An (unsharp mask) sharpening filter is slowly applied to the selected area 

 over time. As the opposite of smoothing, it can be used to roughen 

 areas. 

Noising 

Small random displacements are added to all height values inside the 

 selected area over time. This is typically used to introduce some  

 variation into terrain.  

 

Like applying simple painting strokes, these tools can be used to create any type of 

terrain that is required. But of course, it takes skills to use these tools effectively. Also, 

creating levels this way is very time consuming. Nevertheless, this is all that is offered by 

most level editors that come with a game engine. 

 

6.2 Simulation 

This section discusses different simulation techniques found in literature and some 

terrain synthesis applications, capable of ‘aging’ or eroding an input terrain to create a 

new, more natural output terrain. These simulations are typically applied globally (i.e. on 

the whole terrain).  



Effective GPU-based synthesis and editing of realistic heightfields – G.J.P. de Carpentier 61 

 

   
 

Figure 6-1   Different types of erosion. Left to right: unaltered procedural heightfield, thermal erosion and fluvial erosion. 

These erosive simulations are only very crude approximations of the processes that 

occur in nature. However, impressive results are obtained with these algorithms. They 

are typically iterative, each iteration covering a time step. The covered algorithms can be 

divided into two categories. The first simulates thermal erosion. This is the geological 

term used for the process of rock crumbling due to temperature changes, and the piling 

up of fallen crumbled rock at the bottom of an incline. The second type of erosion 

discussed is fluvial erosion. This type of erosion is caused by running water (e.g. rain) 

that dissolves, transports and deposits sediment on its path. See Figure 6-1. 

 

Thermal erosion, or thermal weathering, is the computationally least intensive type of 

erosion. However, the results created with this type of erosion are also less interesting. It 

simulates the process of loosening substrate which falls down and piles up at the base of 

an incline. This process is responsible for the creation of talus slopes at the base of 

mountains.  

 

A simple thermal erosion algorithm is proposed 

in [MUSG89]. There, the heightfield is scanned for 

differences between neighboring height values that 

are larger than a threshold T. When found, the 

higher of the two neighbors deposits some material 

to the lower neighbor. If a height value has 

multiple lower neighbors, it distributes the 

deposition according to the relative differences. 

The amount of material deposited is a fraction c times the height difference between the 

neighbors minus T. See Figure 6-2. In effect, a maximal slope is enforced after enough 

iterations are executed.  

 

 
 

Figure 6-2   Thermal erosion deposition with c = 
0.5, T = 0. From [BENE01b] 
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The whole heightfield is updated at each iteration for these types of algorithms. 

Typically, the height values are read from the heightfield from the previous iteration, 

processed independently and stored to the new heightfield. As causal dependencies of 

interactions between values are not solved for but set independently for each height value 

instead, fluctuations in total mass and oscillatory heights can occur. But when the 

fraction c of deposited material is chosen small enough (e.g. 0.5), these effects will be 

sufficiently damped and barely noticeable. The advantage of such an implementation is 

that it allows parallel execution of all height updates within one iteration.  

  
 

Figure 6-3   Before (left) and after (right) erosion was applied to the letter W consisting of a hard material and a layer of soft 
material on top 

 

A layered representation of heightfields was presented in 

[BENE01a] in order to cope with a different rock hardness at 

different earth layers. This allows different erosion rates at 

different locations and at different depths. The layers are 

represented as the relative height of different stacked 

material layers in a vertical geological core sample from the 

surface down to an absolute zero height. See Figure 6-4. 

Therefore, the height at the surface is the sum of the 

different layer lengths. Erosion is only applied to the surface, 

using the erosion parameters of the top layer. After this layer 

has locally been worn away, the next layer is exposed and so 

on. This can result in more varied results when the layers 

have been defined usefully. The experiment shown in Figure 6-3 shows a result that 

would be difficult to achieve with non-layered erosion. 

 

Fluvial erosion, or hydraulic erosion, involves depositing water that can dissolve, 

transport and deposit suspended material on its way downhill. Examples of its effects are 

 
 

Figure 6-4   Example of a layered 
core sample. From [BENE01a] 
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gullies and alluvial planes. But also the effects of alpine glacial erosion can be simulated 

if the right settings are used. A simulation of such a process is generally computationally 

more involved than thermal erosion. 

 

These erosion algorithms can roughly be divided into two approaches. One is the 

simulation of individual water particles using a particle system, eroding the terrain 

under their individual paths. Simple physics rules are used to calculate the trajectory as 

it ‘rolls’ down and picks up and deposits sediment. The other approach uses a set of 

additional ‘height’-fields that store the amount of water and the amount of suspended 

sediment within each grid cell. Then, a simulation step consists of updating these fields 

after locally exchanging the necessary information between neighboring cells. This type 

of grid-based local interaction is typical for all cellular automata algorithms. 

 

 In [CHIB98] Chiba et al. describe an 

algorithm that takes an alternative approach to 

fractal synthesis by physically simulating fluvial 

(water) erosion. This algorithm iterates a 

number of times over two subsequent phases. In 

the first phase, several erosion-related data 

fields are calculated from the current (and 

initially flat) heightfield. Then, the data fields 

are used to simulate erosive processes on the 

heightfield. The data fields calculated in the 

first step are a water quantity field W, a water 

velocity vector field V and a collision energy 

field C, which are all discretely sampled using 

regular grids similar to the terrain heightfield. 

These fields are estimated using a time-step simulation of many water particles. The 

water particles are dropped at each grid point and move downhill. At every simulation 

step, all cells of the data fields that the particles pass are updated. When a particle moves 

into a grid cell which is steeper, the length of the local vector in V is increased. When a 

particle enters a grid cell which is less steep, the local length of V is decreased and the 

lost kinetic energy is added locally to the collision field C. W represents the total amount 

of water that passed through each cell. When all water particles moved outside the 

 
 

Figure 6-5   Result of 100 iterations of fluvial water 
erosion. From [CHIB98] 

 
 

Figure 6-6   Fluvial erosion water transfer 
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terrain heightfield or do not have any kinetic energy left, the first phase is completed. 

The second phase uses W, V and C to calculate how much sediment will be dissolved, 

transported and deposited, based on simple empiric rules. See Figure 6-5 for an example 

of a terrain created by this method. 

 

 One of the first grid-based fluvial erosion algorithms can be found in [MUSG89]. Each 

grid point v in the heightfield H(v) contains an additional water volume W(v) and a 

suspended sediment amount S(v). Initially, a uniformly distributed amount of water is 

dropped (i.e. all of W is set to a non-zero value). When the local altitude plus the local 

water level is higher than the neighboring levels, the difference is transferred to the 

lower neighbors. See Figure 6-6. Flowing water will dissolve material and carry this 

sediment to its lower neighbors, up to a given sediment capacity constant times the 

(steepness-dependent) volume of the transferred water. Dissolving material is 

implemented by locally increasing the value in S(v) by the same (small amount) as 

decreasing H(v). Likewise, depositing material increases H(v) at the cost of S(v). When 

the local steepness-dependent sediment transfer capacity is larger than the amount of 

local sediment, more sediment is dissolved from H(v) and transferred. Likewise, when the 

capacity is smaller than the local amount of dissolved sediment, some of the sediment is 

deposited back to H(v). Because the capacity is zero when the water level has reached a 

(local) equilibrium, all dissolved sediment is eventually returned to H(v).  

 

In effect, this process will dissolve material from steep areas where relatively more 

water will flow and deposits the dissolved material again at flat areas downhill. As the 

geometry will force water to flow down non-uniformly, certain areas will be deepened and 

smoothed more than average. Areas that are deeper than their surrounding areas will 

receive even more water in the next iteration, amplifying this effect. As a result, 

distinguishable water streams are sculpted into the original heightfield. Note that water 

velocity, impact and evaporation are not considered here. Nonetheless, impressive result 

can be obtained with this algorithm given the right parameters and enough iterations. 

See Figure 6-1. 
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Several variations have been devised. In [BENE02b], 

water evaporation is included to limit the distance 

sediment can travel. Olsen suggests several tradeoffs 

between accuracy and speed in [OLSE04]. There, only 

the four neighbors in the von Neumann neighborhood 

are considered instead of the original eight neighbors in 

the Moore neighborhood. See Figure 6-7. Also, water is only transported from a high grid 

cell to its single lowest neighbor instead of being distribution among all its lower 

neighbors. Furthermore, it is assumed that water is fully saturated with sediment at all 

times and thus no separate S(v) sediment map is required. Although physically less 

correct, the results are still visually plausible. 

 

A more physically correct model has been proposed in 

[BENE06] by discretely solving the Navier-Stokes equations to 

simulate water more realistically. Sediment transportation 

equations are added to simulate erosion. The equations are 

applied to voxelized (terrain) patches instead of heightfields to 

allow for a standard Finite Element Modeling approach to solve 

these equations. See Figure 6-8. Although results are 

impressive, calculation time currently prohibits its use in 

interactive applications. 

 

In Section 6.1, several inexpensive, low-level brushes were discussed. Although it 

would be possible to create complex terrain with these brushes, a user is greatly aided 

with brushes that create more complex and natural terrain as discussed in this section. 

The approaches discussed here are computationally quite expensive as geological 

processes are effectively simulated over time. In the next section, ‘procedural’ algorithms 

are discussed that also try to offer complex and natural results but, unlike the algorithms 

discussed here, can be evaluated much faster.  

6.3 Procedural Synthesis 

Procedural synthesis or generation is the term used for techniques that create content 

algorithmically. These algorithms do not need to be physically correct, elegant or 

  
 

Figure 6-7   Neighboring cells (grey) in 
the Von Neumann neighborhood (left) 

and Moore neighborhood (right) 

 
 

Figure 6-8   Oxbow lake-like 
features carved out by water 
simulation in a terrain patch. 

From [BENE06] 
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deterministic. They have two advantages in the field of computer graphics. One is the 

smaller storage requirement. The code needed for procedural algorithms only takes up a 

fraction of the storage space that is required to store the large (or even infinite) amount 

of detail it can output. The other advantage is design. Whereas handcrafted data is 

generally only used once, a carefully designed parameterized algorithm could be 

reapplied many times to generate varied output of comparable quality. On the other 

hand, design through the use of procedural algorithms can be complicated if a specific 

result is desired that cannot easily be expressed in the exposed parameters.  

  

Generating content through procedural algorithms has proven to be fruitful in fields 

like the generation of plants [PRUS90], cities [PARI01], clouds [VOSS89], complex 

(fractal) implicit surfaces [PERL89], texture generation [PERL85] and heightfields 

[MAND82]. This section discusses procedural algorithms related to the generation of 

natural heightfields. 

 

The first person who noted mountain-like properties of a mathematical process was 

Mandelbrot. In [MAND82] he observed the similarity between a trace of the one 

dimensional fractional Brownian motion over time and the contours of mountain peaks. 

Extending this idea to two dimensions created a ‘Brownian surface’ resembling a 

mountainous scene. This Brownian process was later generalized to fractional Brownian 

motion (fBm) surfaces with a 1 / ƒβ power spectrum. β is called the spectral exponent and 

is directly related to the fractal dimensionality. Although mountains do exhibit some self-

similarity, the formation or shape of mountains is not (known to be) quantitatively 

connected to fractals [LEWI90]. But as a descriptive model, this does not have to be an 

objection to use it to approximate natural terrain.  

 

fBm surfaces do posses some features that visually distinguish them from real 

mountainous terrain. The increments of an fBm process have the property of being 

isotropic and stationary, creating terrain that is statically invariant under translation 

and rotation. This will result in terrain that looks too homogeneous when compared to 

mountainous areas. Also, fBm surfaces have no local spatial relationship between 

amplitudes of different frequencies. Whereas natural scenes clearly have, as mountain 

tops are on average locally rough and valleys are locally smooth. Even so, fBm models are 

still the basis for many procedural terrain generators [MUSG93, p. 33]. 
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By definition, fBm is the integral over time of increments of a pure random process, 

also called a random walk. This stochastic process can be synthesized by summing over a 

basis function at multiple discrete frequencies with different amplitudes to create its 

characteristic 1 / ƒβ power spectrum. Examples of possible basis functions are band-

limited noise functions and sine waves. Varying the basis function and power spectrum 

has proved to be a powerful method to generate landscapes. Because natural terrain is 

not per definition best approximated by an fBm surface, exploring different variations 

that do not yield a true fBm surface, but do have some fBm-like qualities can yield better 

(more natural) results. Also, approximations can be calculated in several different ways. 

Most terrain generating applications are based on one of the approaches discussed below. 

  

One possible implementation of creating an fBm surface involves the displacement of 

a plane by summing over the effect of many independent random Gaussian 

displacements (faults, or step functions) with a Poisson distribution. This was originally 

employed by B.B. Mandelbrot [MAND82] and R.F. Voss [VOSS85] to create the first 

procedural landscapes.  

6.3.1 Poisson faulting 

‘Fault formation’ and ‘particle deposition’ are two variants of Poisson faulting. Fault 

formation is introduced in [KRTE01] and is illustrated in Figure 6-9. Faults are created 

by repeatedly displacing the heightfield values at one side (i.e. halfspace) of a randomly 

chosen line through the heightfield by some amount. This process is repeated many times 

while the amount of displacement per iteration is slowly decreased. Because the result 

might still be too rough and aliased afterwards, a low-pass filter is normally applied as a 

final step. 
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After 4 iterations 
 

After 64 iterations 
 

After 64 iterations and filtering 
 

Figure 6-9   Creating a fault formation heightfield. Higher areas are lighter 

Fault formation can create elongated mountain ridges and faults. However, most fine 

detail is lost because of the low-pass filtering. Also, the steepness of faults is directly 

related to the parameters used for the low-pass filter. Furthermore, many iterations are 

necessary to create a reasonable complex landscape. Creation is mostly fill rate limited 

because, on average, half the height values are updated for each iteration. It follows that 

this algorithm has an O(N3) work complexity, where N is the width or height of the 

heightfield (expressed in number of vertices) and the number of iterations is related to N. 

Because of these drawbacks, this technique is seldom used in commercial heightfield 

applications. One of its merits is the applicability of this idea to primitive shapes other 

than vertically displaced planes (i.e. heightfield), which might be difficult to do with other 

techniques. For example, [ELIA01] discusses fault formation on spheres. For a more 

elaborate discussion of fault formation, see [SHAN00].  

 

Another type of Poisson faulting is called 

particle deposition, which involves a simple 

simulation of dropping particles on a flat plane. 

When a dropped particle touches the heightfield, 

it will ‘roll’ further downwards until a local 

minimum is reached and there it will increase 

the value of the heightfield with a small value Δ. 

See Figure 6-10. When enough particles are dropped, the produced pattern will 

(somewhat) resemble viscous fluid (e.g. lava). Because two adjacent heightfield elements 

can only differ by Δ, the maximum steepness depends on Δ and the heightfield grid 

spacing. This ‘roll’ simulation is a very crude approximation of thermal weathering (See 

Section 6.2). The shape of the terrain can be controlled by changing the drop pattern. 

This technique is primarily suited for creating volcanic terrains. Because of its local 

control and simple implementation, this technique might be useful for interactive editing. 

 
 

Figure 6-10   Flow simulation in particle deposition 
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6.3.2 Midpoint Displacement 

 Introduced by Fournier et al. [FOUR82], midpoint displacement has long been the 

preferred technique to efficiently generate terrains. Heightfields are created by 

recursively subdividing (i.e. tessellating) a heightfield mesh and randomly perturbing all 

new vertices. When the perturbation has a Gaussian distribution and a standard 

deviation of 2-ℓH, the result will be an approximation of an fBm when ℓ is the subdivision 

level and H is the self-similarity parameter in the range [0, 1]. See Section 6.3.4 for more 

information on the relation between fractal terrain roughness and H. All midpoint 

displacement schemes have complexity O(N2), N being the width of the (typically square) 

heightfield. Because the amount of calculation per vertex is also very limited, midpoint 

displacement schemes are very efficient. 

 

Different subdivision schemes have been devised for different mesh topologies. 

[FOUR82] used a triangle subdivision that involves interpolating between the two 

vertices. Mandelbrot introduced a subdivision scheme specifically for hexagon meshes 

[MAND88]. However, these topologies are seldom used in terrain specification and will 

not be discussed in this report. 

 

 The widely used diamond-square scheme for quadrilaterals was also presented in 

[FOUR82]. This two-phase algorithm subdivides a regular square grid at any level by 

first calculating and perturbing the (new) exact midpoints of each set of four nearest 

neighbors that together form a square. Then, another set of vertices is interpolated 

between each set of four nearest neighbors that together form a diamond (two of which 

were calculated at previous levels and two were calculated in the phase 1 of this 

subdivision level) and is perturbed. This will create a new regular grid of quadrilaterals. 

See Figure 6-11. 

     
a) b) c) d) e) 

 
Figure 6-11   Square-diamond midpoint displacement. b) and d) are intermediate results after applying the first phase. c) and e) 

applied phase 2. From [OLSE04] 
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The diamond-square scheme creates visible anisotropic artifacts along the (eight) 

directions of interpolation. The square-square scheme presented in [MILL86] subdivides 

a regular mesh by using its ‘input’ mesh as a regular mesh of control points for a 

biquadratic uniform B-splines interpolant. This results in less visible anisotropic 

artifacts. A disadvantage of this interpolation scheme is the smaller size of the mesh after 

each subdivision step. Also, the fact that the resulting surface generally doesn’t go 

through the set of control points, but only approximates them, might be a drawback for 

some applications. 

 

 Midpoint subdivision has been used in many simple terrain generation applications. 

It is generally easy to understand and implement. Furthermore, it is very efficient if a 

whole patch needs to be subdivided and stored in memory. For example, in square-

diamond subdivision, each terrain vertex needs only to calculate one interpolation and 

perturbation, whereas most other synthesis techniques (see next paragraph) need many 

interpolations. But because of its nested structure, this method is less suitable for ad-hoc 

local evaluation and only works on heightfields of 2k x 2k vertices. 

  

 The principle of interpolating values of neighboring vertices and adding a 

perturbation was extended to Generalized Stochastic Subdivision in [LEWI87]. There, a 

larger neighborhood, together with an autocorrelation function for each subdivision level, 

is used to allow creation of a mix of stationary (noisy) and non-stationary (periodic) 

patterns. Although flexible, it needs many more parameters than the methods above. For 

this reason, most terrain generating applications do not support generalized stochastic 

subdivision. However, it might have some limited use in creating terrain types that are 

hard to create with other techniques, e.g. (periodic) sand dunes.  

6.3.3 Fourier Synthesis 

Fourier synthesis can be applied for terrain generation as follows: First, the 2D 

Fourier transform is calculated of a random Gaussian white noise heightfield. Secondly, 

the noise in the calculated frequency domain is multiplied with a pre-designer filter to 

create the desired frequency spectrum. Lastly, the multiplied result is transformed back 

to the spatial domain using the inverse Fourier transformation. When the right 

frequency spectrum is chosen, an fBm process is approximated [VOSS89]. An obvious 
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advantage of this approach is the exact control over the frequency content. Disadvantages 

are the periodicity of the final surface and the O(N2 log N) complexity of 2D FFTs. Also, 

any heterogeneous extension for local spatial control of detail during construction is less 

straightforward than for noise synthesis (see below).  

6.3.4 Noise Synthesis 

Noise synthesis is the iterative summing over band-limited noise functions. The noise 

functions approximate a band-limited sum of frequencies with random amplitude and 

phase. By calculating a weighted sum of 2D noise functions of different band-limited 

frequency ranges, any power spectrum can be composed, including a 1 / ƒβ spectrum, 

approximating an fBm surface.  

When ( )G t is the Fourier transform of a function g(t), 1 ( )tG
c c

 is the Fourier transform 

of ( )g ct . This means that when the input of a band-limited noise function N is scaled by (a 

positive) c, the frequency spectrum of N is scaled by 1 / c. So, having just one band-limited 

noise function and scaling its input and its output will create another band-limited noise 

function with a scaled mean frequency. Noise synthesis can therefore be written as: 

 

max
max
min

min
( , ) ( , )

LL l l l
L

l L
H x y w N x yλ λ

=
= ∑  

 

 Here, l represents a detail level and λLmin and λLmax represent the largest resp. 

smallest scale level any band-limited detail should be visible at. This means that Lmax - 

Lmin +1 is the number of summed noise functions. Increasing the number of calculated 

levels increases the total range of frequencies covered at the cost of extra computing 

power. λ, called the lacunarity, is the scale between the mean frequency of each of the 

successive noise levels. Increasing the lacunarity will increase the gaps between the 

separate noise evaluations, creating an uneven distribution of represented frequencies, 

but fewer levels will be needed to cover the same total frequency range. Somewhat like 

the subdivision scale of midpoint displacement, most noise synthesis implementations 

use λ = 2, or a number very close to it, as the optimal tradeoff between accuracy and 

speed. As a result, the mean frequency of the noise function is roughly doubled at each 
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level. Because of this doubling of frequencies, levels are also called octaves, borrowed 

from sound theory. The constant w controls the roughness of the synthesized result and 

can be written as a function of λ and the spectral exponent β, introduced earlier 

[MUSG93, p. 37]. The relation between these three parameters is as follows: w = λ-β/2. 

Often, the terrain roughness is specified by the self-similarity factor parameter H, with β 

= 1 + 2H. The fractal dimension Df is 3 - H. To qualify as a fBm, H must be in the interval 

[0,1]. This means the fractal dimension lies between a 2D surface and a 3D volume 

(assuming that an infinite amount of levels would be calculated). True (non-fractional) 

Brownian motion has a 1 / ƒ2 power spectrum and has therefore a fractal dimension Df of 

2½. See Figure 6-12. 

 

The actual noise function can be constructed in different ways, each having a different 

characteristic band-pass quality and construction speed. An overview of these functions is 

given in Section 6.4.  

 

 The above formula can be generalized to create more types of terrains by allowing a 

function to transform each noise octave before it is added: 

 

max
max
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L
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=
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 The turbulence function T(n) [PERL89] is one of the first algorithms to explore the 

possibilities of this generalization by defining T(n) as abs(n). Taking the absolute value of 

[-1, 1] noise folds it at each zero crossing, creating discontinuities and doubling the 

number of (positive) peaks. This creates more billowy, turbulent, cloud-like fractal 

landscapes. See Figure 6-13. Another variant is T(n) = 1 - abs(n). This transform has the 

opposite effect, creating ‘ridges’ at the discontinuities around n = 0. The results created 

with non-linear functions are still fractal, but do qualify as fBm surfaces. 

 

Of course, many other functions might prove useful for different types of terrain. One 

flexible way to give the user the freedom to experiment with this would be to present a 

simple input/output T(n) mapping function as an editable (e.g. drawable) curve. 
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H = 1 : Df = 2, w = ¼√2 
 

H = ½ : Df = 2½, w = ½ 
 

H = 0 : Df = 3, w = ½√2 
 

Figure 6-12   Heightfield of different fractal dimensions. Perlin noise 

   
 

   
 

fBm : T(n) = n 
 

Billowy : T(n) = abs(n) 
 

Ridged : T(n) = 1-abs(n) 
 

Figure 6-13   Heightfields with one octave (top row) and eight octaves (bottom row) of transformed noise. Perlin noise, H = ½ 

Local properties of real terrain are not stationary (i.e. statistically translation 

invariant). Foothills are smoother, while mountain tips are more jagged. The midpoint 

displacement and noise synthesis approaches can be modified to simulate this 

observation by controlling the local statistics. To do this, T can be defined to depend on 

the sum of lower frequency octaves, i.e.:  

 
1max

min
( ) ( ( , ))L

LT n G H x y n−= ⋅  

 

 Since higher octaves will have less amplitude (the factor wl), the sum of all lower 

octaves 1max
min

L
LH − can generally be interpreted as an approximation of max

min

L
LH . When G(n) is 

a function that is positively correlated to n, T(n) will have the effect of locally increasing 

the noise amplitude at higher altitudes. This has the desired effect of creating rougher 

terrain (with a higher fractal dimension) at high altitudes and smoother terrain at low 

altitudes. This type of fractal is called a heterogeneous multifractal. Another way of 

creating heterogeneous multifractals is by multiplying multiple noise octaves instead of 

summing them.  
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 Here O is an extra offset parameter that is 

somewhat reciprocally related to the roughness 

of the result. The actual range of output values 

for this type of multifractal is highly 

unpredictable. Therefore, the output range 

needs to be measured after creation, so it can be 

rescaled to a predictable range (e.g. [0, 1]). See 

Figure 6-14 for an example. In [EBER03, p. 498-

506], different variants of these multifractal techniques are discussed in detail. 

 

 The octave transformation function T(n) can also be made to depend on other inputs. 

For example, the function T(n) = M(s x, s y) n, with s being a scaling factor and M(u, v) 

being the local greyvalue of a 2D image at coordinate (u, v). Here, T(n) is used to control 

the local roughness by looking up an amplitude multiplier from another image. The 2D 

image itself can also be a procedurally generated fractal. This is just one example of 

cascading, a powerful concept where a procedural algorithm uses other procedural 

algorithms or complex handcrafted work as input parameters.  

6.3.5 River Networks 

One of the drawbacks of all fractal synthesis techniques discussed so far is the lack of 

explicit river networks in a terrain. Furthermore, adding realistic rivers to a terrain after 

the terrain already has been generated with one of these techniques has proven difficult. 

Two alternatives will be discussed here that create river networks before the final 

heightfield is calculated. 

 

 
 

Figure 6-14   Height-dependent high frequencies 
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In [KELL88] A.D. Kelley et al. describe a 

procedure to recursively create drainage networks 

first that are then used to create the topography of 

the terrain. The algorithm iteratively inserts 

tributaries into the drainage network using 

empirical rules, creating a fractal network of 

streams. Then, a (smooth, non-fractal) surface is 

fitted by a surface under tension technique. See 

Figure 6-15. Although this surface might afterwards 

be distorted to create rougher terrain, the distortion cannot be too strong, as streams 

might otherwise end up flowing uphill.  

 

  
 

Heightfield after ridge and water particle simulation 
 

Heightfield after midpoint displacement 
 

Figure 6-16   Fractal landscape with river network. From [BELH05]  

 In [BELH05] F. Belhadj and P. Audibert discuss the idea of modeling outlines of 

mountain ridges using pairs of 2D Gaussian-shaped particles moving in opposite 

directions. These particles are randomly translated using fractional Brownian motion. 

After settling, the trails made by these particle pairs are interpreted as rough outlines of 

mountain ridges. Then, virtual water particles are placed at these ridge lines and 

simulated to roll downhill. The trail of these water particles is then interpreted as the 

shape of a river network. At this point, the heightfield is partly filled with fine ridge lines 

and river trails. By extending the idea of diamond-square midpoint displacement, all 

other values of the heightfield are recursively interpolated. See Figure 6-16.  

 

 

 
 

Figure 6-15   Drainage network and fitted 
(non-fractal) surface. From [KELL88] 
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6.3.6 Range and Domain Mapping 

 Another way to create more varying landscapes is to transform the output (or, range) 

of H as a post-processing step :  

 

( , ) ( ( , ))H x y P H x y′ =  

 

 To let P(z) be as independent as possible of the exact parameters used to construct H, H 

is generally rescaled to the range of [0, 1] as an intermediate step.  

 

Two functions that are often used for range mapping are the bias and gain [PERL89] 

functions: 
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These functions have the following useful properties: 

 

 

These simple properties make them transparent and intuitive to a user. See Figure 

6-17 for examples of these functions, together with their effect on a heightfield. 
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Original 
 

‘Glacier’ effect:  
P(z) = biasb(z), b < ½ 

 
‘Canyon’ effect:  

P(z) = biasb(z), b > ½ 

 
‘Midland’ effect: 

P(z) = gaing(z), g < ½ 
 

Figure 6-17   Heightfields after post-processing. Perlin noise, H = ½. Top row: P mapping, bottom row: result 
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Range mapping transforms a function’s output. Analogously, domain mapping 

transforms a function’s input before the function is evaluated. Besides obvious uses like 

scaling and rotation, input perturbation is a valuable and flexible tool when defined as: 

 

 
1 2

( , ) ( ( , ))
( , ) ( ( , ), ( , ))

H x y H P x y
P x y x N x y y N x y
′ =

= + +
 

 

where N1 and N2 can be any (scaled) noise function. As a result, P perturbs the input 

coordinates of H. See [EBER03, p. 450] for details. 

  

 For example, a noise synthesized heightfield that used a Voronoi noise base function 

(see Section 6.4) will contain many straight ridges. By applying a domain mapping with 

N1 and N2 being (differently translated, rotated and scaled) Perlin noise functions, 

interesting and natural looking curves and shapes appear. See Figure 6-18. This is 

another example of cascading different functions to increase the visual complexity of the 

result. 

  
 

Original heightfield without domain mapping 
 

Heightfield with domain mapping 
 

Figure 6-18   Voronoi heightfield without (left) and with (right) noise distorted input  

6.4 Noise functions 

As described in the previous section, generating procedural content through noise 

synthesis is accomplished by adding band-limited noise functions. Varying the added 

frequencies (scales) and the characteristics of the noise function will have a large impact 

on the result. For this reason, different noise functions have been developed as basis 

functions, almost like building blocks, for the construction of procedural content. For a 

synthesized result of a specific power spectrum (e.g. fBm surfaces), the ideal noise 
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function would produce narrowly band-limited, stationary (translation invariant) and 

isotropic (rotation invariant) noise. But as a building block for artistic or natural effects, 

other ‘noise’ types might be preferred in order to achieve a desired look. This section 

discusses different noise basis functions for use in noise synthesis-based terrain 

generation.  

 

Fourier synthesis was already discussed in Section 6.3.3, but separating it in multiple 

band-limited noise building blocks allows it to be used for noise synthesis, adding to its 

flexibility. Band-limited noise is easy to define in the frequency domain. The amplitudes 

of the frequencies are randomly chosen using a probability distribution of the desired 

band-limited power spectrum. Then, an inverse Fourier transform is performed to get the 

random noise in the spatial domain using either DFT (Discrete Fourier Transform) or 

FFT (Fast Fourier Transform) [COOL69]. FFT can be more efficient than DFT when a 

large ‘patch’ of noise evaluations is needed all at once (explicit construction). When only 

single samples are needed, DFT is preferred (implicit evaluation) [EBER03, p. 49]. 

However, calculating a FFT or DFT is relatively computationally intensive, making 

Fourier synthesis less practical than alternatives.  

 

Lattice noise functions assign uniformly distributed (pseudo)random numbers at every 

point in space whose coordinates are integers, creating a regular lattice of random 

numbers. An interpolation scheme that uses the assigned random numbers of nearby 

neighbors at integer coordinates is applied to calculate the output value for an input 

coordinate. The interpolation scheme has the effect of a low-pass filter. And because the 

highest frequency of lattice noise is limited by the lattice density, lattice noise is band 

limited.  

 

Depending on the application’s requirements, the random numbers assigned to every 

integer coordinate can either be precalculated and stored explicitly, or evaluated at 

request by hashing the integer coordinate to retrieve a random number. For the hashing 

technique, two 1D lookup tables are used. The H table is a precalculated random 

permutation of the set of all integers in the input domain of size N (typically a power of 

two). The G table is also of size N and contains random numbers in the range [-1, 1]2 for 

the 2D case. Then, a pseudo random value can be calculated by evaluating G( H( ( x + 

H(y) ) mod N ) )  [PERL85]. 
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Perlin Gradient Lattice Noise 

Perlin noise is perhaps the most well known noise type, introduced in [PERL85]. Here, 

the random numbers at the integer coordinates do not represent the points through the 

noise function, but rather, gradients at these points. The returned value at all integer 

coordinates is per definition zero. All non-integer coordinates are calculated by 

interpolating between the gradients of the 2d closest neighbors at the integer coordinates, 

with d being the dimension of the coordinate space (two in the case of heightfields). For 

gradient noise, the V table contains random gradients which are random vectors 

uniformly distributed on the d-dimensional unit (hyper)sphere. 

 

Perlin originally proposed using a linear interpolator [PERL85], but later proposed a 

cubic [PERL89] and quintic [PERL02] interpolation spline to achieve C1 respectively C2 

continuity. Higher order interpolation is slightly more computationally intensive but, 

depending on the application, can be worth the extra effort. See Figure 6-19. See 

[PERL02] and [PERL04] for a more elaborate discussion. The power spectrum of gradient 

noise has little low-frequency power and is dominated by the frequencies that are near to 

one-half (on an integer-spaced lattice). In other words, it is fairly well band-limited. 

   
 

Linear interpolation (C0 continuity) 
 

Cubic interpolation (C1 continuity) 
 

Quintic interpolation (C2 continuity) 
 

Figure 6-19   Different gradient noise interpolation schemes  

Wiener Value Lattice Noise 

Unlike gradient noise, value noise lets the random numbers assigned to the integer 

coordinates be the returned noise values at these points. Non-integer coordinates are 

calculated using an interpolation scheme. Like Perlin Noise, linear interpolation would 
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result in visible ‘boxy’ artifacts. Interpolation in normally implemented using Catmull-

Rom splines [CATM74]. This interpolation scheme needs more samples of the 

neighboring lattice points (4d neighbors for d-dimensional lattice space) than gradient 

lattice noise (2d neighbors). Value lattice noise has more power in the lower frequencies 

than gradient noise and is therefore less suitable as a band-limited noise octave. For 

more information on the value lattice noise, mixing value noise and gradient noise, and 

other lattice noise functions, see [EBER03, p. 67]. 

 

Lattice noise can have axis-aligned artifacts. To prevent this, sparse convolution noise 

first places randomly distributed impulses [LEWI89]. Then, filtering is applied using a 

low-pass convolution kernel. The resulting noise power spectrum can be controlled by the 

filter kernel and is related to the kernel’s power spectrum. A common implementation of 

the filter kernel is a Catmull-Rom spline. The power spectrum of sparse convolution noise 

resembles a (scaled) power spectrum of value lattice noise. Even though convolution noise 

is of higher quality than lattice noise functions, it is (for the non-mathematical purpose of 

terrain generation) not worth the increased computing time. 

Voronoi Noise 

Even Voronoi diagrams have been used as band-limited noise functions [WORL96]. 

Like sparse convolution noise, the first step in constructing this type of noise is picking 

random points as a Poisson process. Then, a sample’s value can be evaluated by 

calculating the weighted sum of the distances to the top d closest neighbors. That is,  

 

( , ) d d
d

N x y w N R= −∑   

 

with N being the coordinate evaluated, Rd being the random point that is dth-closest to 

N and wd the weight for the dth-closest neighbor. See Figure 6-20 for examples of Voronoi 

noise that are interpreted as heightfields. Although Voronoi noise isn’t a very good 

approximation of band-filtered white noise, its average cell size can be controlled by the 

random point density. This makes it a noise building block of band-limited feature scale 

and, therefore, does have its uses in procedural (heightfield) noise synthesis. More 
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natural shapes appear when combined (cascaded) with domain distortion functions. See 

Figure 6-18. 

   
 

w = {1, 0, 0, 0, …} 
 

w = {0, 1, 0, 0, …} 
 

w = {-1, 1, 0, 0, …} 
 

Figure 6-20   Voronoi diagram ‘noise’  

Creating Voronoi noise is relatively computationally intensive. However, the shape of 

its typical features is not easily approximated using less computationally intensive 

techniques. For this reason, it might still be appreciated by designers to offer an option 

for Voronoi noise in a toolbox. 

6.5 Complex Brushes 

Low-level operations can be ideal when only small changes are needed. The user 

control offered by using the simple and unnatural brushes is large. Indeed, every type of 

terrain can be created with these tools by a good level designer given enough time. High-

level procedural tools used in generation tools typically offer the opposite. Control is 

offered using only a number of parameters that can be tweaked. Output is reasonably 

natural without much effort from the user.  

 

Obviously, tools that would fit somewhere between the global procedural terrain 

synthesis tools and the local brush operation tools or would mix best of both worlds would 

certainly find their use in the level design process. For example, the concept of brushing 

to edit terrain is not necessarily too primitive to be efficient for a designer. When the set 

of brush tools is extended to include more powerful and natural effects, this intuitive 

interface allows creation of more natural effects in less time. Like the low-level brush 

editing tools, a brush with a user-defined radius and falloff curve could be offered as a 

local interactive tool to apply procedural techniques locally and controllably, adjusting 

the terrain while brushing with simple mouse strokes. The parameters to the procedural 
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technique could then be made adjustable through the use of sliders and presets or could 

even be coupled to other sources (e.g. heightfields, noise generators, tablet stylus tilt). 

 

 Two different methods can be used for many of these brushes. The first is 

straightforward and consists of direct editing of the selected heightfield. The second is 

indirect editing, where the designer can paint a mask field specifying the local strength of 

a tool’s effect, similar to an alpha mask. Then, this mask field is used to locally (re)apply 

any of the operations discussed throughout this section to create a separate output 

heightfield. This has the advantage of supporting a simple effect eraser brush where the 

effect mask can locally be cleared with. Another advantage is mask scaling, which would 

globally amplify or fade away the effect. Also, more advanced, non-linear and order-

dependent techniques could use this mask to reapply the operation to the complete input 

instead of reacting to the latest change. Results created this way would be independent of 

the exact sequence of brush strokes.  

 

When this idea of indirect editing is generalized, heightfield operations can be seen as 

a flow graph of operation and data nodes (e.g. blend nodes, file inputs, procedural 

heightfields and painted mask layers). Although this is a powerful paradigm, it is also 

difficult to implement efficiently in terms of memory and computational power, which 

would be important as explained in Chapter 3. It is especially difficult to do so when an 

operation requires multiple heightfield inputs. By allowing the designer to choose 

between direct editing and indirect editing through the use of mask layers, it is left up to 

the designer to choose the type that is most appropriate. Direct editing is fast and is less 

flexible. Indirect editing is both more memory intensive and computationally intensive, 

especially when many layers are used during editing. Collapsing one or more layers (i.e. 

applying the operator using the mask field, explicitly storing the result as a new 

heightfield and deleting the mask field and any other input fields) after being done with 

it might keep indirect editing workable at interactive speeds. 

6.6 Blending 

Another useful type of brush would be a copy brush. This would enable a designer to 

locally ‘paint’ a terrain from a different source heightfield onto the destination work 

terrain. Consequently, procedural techniques might be used in later stages by blending 
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any desired parts of newly generated terrain into a project. Such a copy brush could be 

accomplished in different ways, varying from the simple copy-pasting of all height value 

within a (circular) brush area, up to seamless copying and blending of brush areas using 

more advanced algorithms.  

 

As discussed in Section 6.5, brushes can be applied by directly modifying the original 

area or can be applied indirectly by transparently (re)applying an algorithm to the 

separately kept original area while using a brushed influence mask. The latter has the 

advantage of supporting eraser brushes (locally clearing the influence mask) and global 

scaling and tweaking of the effect at any time. Terrain blending would benefit from this 

latter approach as it presumably requires iterative tweaking of the exact blend area and 

other blend parameters.  

 

The simplest type of blend would be mere copy-pasting of the selected source terrain 

into the destination terrain. One difficulty with this idea would be the resulting seams at 

the border of the selected area. Unless the height at the source and the destination area 

match up at the borders of the brush(ed) area, a shift in average height will be noticeable. 

This is generally not desirable as you most likely would like to copy features within the 

brush areas from the source area to the destination area, not create new features (i.e. the 

sudden change in height). The following subsections discuss different techniques of 

increasing complexity to blend two heightfields. As with some of algorithms discussed 

before, these techniques were developed as or inspired by image editing techniques, but 

can transparently be applied to heightfields. 

 

A common technique in image editing is feathering. A soft brush (with a falloff curve 

towards its edge) is used to blend in the result. A simple dst’ = lerp(dst, src, mask) (i.e. 

linear interpolation blend of src into dst where indicated by mask) can be used to 

calculate the local height value of the blended result. Here, mask is a temporary mask 

field (i.e. a scalar field similar to a heightfield) where the local value determines the 

blending strength. It is typically zero for all height values outside the brush’s radius and 

is increasing up to one towards the brush’s center. This will limit the hardness of the 

brush’s border, but will not completely alleviate the problem, as Figure 6-21 

demonstrates for a synthetic example. In that figure, a ‘mountain’ is created while it 

might be the designer’s intent only to locally replace the square wave with the triangular 
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wave where he or she brushed. The problem here is the large difference in the mean of 

the source and destination terrain. In this particular case, one could normalize both the 

source and destination terrain by subtracting their respective mean value before blending 

them and then add the old mean value of the destination again. This can be seen as 

separating the terrains into a DC (i.e. zero frequency) component and a non-DC (i.e. all 

non-zero frequencies) component, blending the source and destination terrain per 

component using a weighted strength mask and calculate the sum of these blended 

components. This is a special case of the algorithm discussed next. 

 

 

In [BURT83], an image blending technique is introduced that uses Gaussian and 

Laplacian pyramid decompositions of the source and destination image to blend these 

differently for different frequencies or scales. Low-frequency signals are blended over a 

longer distance (i.e. feathered more), while higher-frequency signals are blended over 

shorter distances. This is an example of multi-resolution blending. Gaussian and 

Laplacian pyramids are discussed first, before the actual blending algorithm is described. 

 

The Gaussian image decomposition pyramid assumes an input image of size 2N x 2N 

and constructs a pyramid of N+1 levels with a 2L x 2L image at level L, 0 ≤ L ≤ N. The 

image at level N is the original image. An image at level L can be constructed by 

downscaling (reducing) the image at level L+1 by a factor of two. A filter with a (small) 

fixed-sized low-pass kernel is convolved before every resolution reduction. This filter 

filters out all frequencies higher than half the sampling rate, as required by the Nyquist-

Shannon sampling theorem, to prevent aliasing. Often, a small 5 x 5 kernel is used as an 

approximation to a 2D Gaussian kernel. For a faster, less accurate implementation, a 2 x 

2 averaging kernel is sometimes used instead. In effect, the different pyramid images can 

be seen as (scaled) approximations of low-pass Gaussian filtered images with successively 

    
 

 Destination terrain 
 

Source terrain 
 

Feathered brush strength 
mask 

 
Result blended terrain 

 
Figure 6-21   Heightfields after post-processing. Perlin noise, H = ½. Top row: P mapping, bottom row: result 
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doubled radii. For this reason, this type of pyramid is called the Gaussian image 

pyramid. The construction procedure is depicted in the top half of Figure 6-22. 

 

The images in the Gaussian pyramid are low-pass filtered images. However, the 

Gaussian pyramid can be processed further to create a band-pass filtered pyramid of 

images. This band-limited pyramid approximates the Laplacian of Gaussian (LoG), often 

simply called the Laplacian, at different (successively doubling) scales, creating a 

decomposition into wavelets. The level 0 of the Laplacian pyramid is equal to level 0 of 

the Gaussian pyramid. The Kth Laplacian layer, 1 ≤ K ≤ N, can be constructed by 

subtracting the (K – 1)th Gaussian layer from the Gaussian Kth layer, after up-scaling 

(expanding) the (K – 1)th Gaussian layer to 2K x 2K. The interpolation scheme used for 

expanding can be chosen freely. Construction of the Laplacian pyramid from the 

Gaussian pyramid is shown in the bottom half of Figure 6.3. Note that the Laplacian 

pyramid allows lossless reconstruction of the original input image using N cascaded 

expand-and-sum operations, effectively summing over all Laplacian levels that are 

recursively rescaled to N x N.  
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Figure 6-22   Construction of the Gaussian and Laplacian image pyramid 
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The actual multi-resolution blending algorithm consists of three steps: decomposition, 

blending the different components and recomposition. Decomposition consists of 

calculating the Laplacian pyramid of both the source and destination image. Also, the 

Gaussian pyramid of the mask is calculated. Then, a new Laplacian pyramid is calculated 

from these three src, dest and mask pyramids by calculating the independent result 

image of a lerp(src, dest, mask) per pyramid layer. Finally, the image result is 

recomposed by summing over the different layers of this resulting Laplacian pyramid. 

Although originally developed for image mosaicing, it can transparently be applied to 

heightfields. This blending process is demonstrated in Figure 6-23 for the synthetic 

terrain cross section of Figure 6-21. 

 

This algorithm results in a multi-resolution blend of source and destination where the 

finest details are interpolated between source and destination over a short distance when 

a (non-feathered) brush is used. Coarser detail is interpolated over a longer distance. In 

effect, details will be blended over distances similar to the specific detail size. 

 

Destination terrain 

 

Source terrain 

 

Mask 

  

Pyramid 
Layer: 

Laplacian pyramid: Laplacian pyramid: Gaussian pyramid: 
Laplacian pyramid of lerp() results 

for each layer: 

N 

    
…  …  … 

N - 2 

    
…  …  … 

1 

    

   Result: 

 

 
 

Figure 6-23   Multi-resolution blending of a terrain heightfield cross section 
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This idea can be made more flexible by introducing a scaling factor per layer of the 

mask pyramid, bound between 0 and 1. Choosing relatively lower scaling factors for the 

lower octaves would result in copying less of the lower frequencies of the source image. 

Likewise, zeroing out the scaling factor for the highest frequencies would leave the higher 

frequency features of the destination unchanged. See Figure 6-24 for these two scaling 

examples applied to a more realistic heightfield. 

 

A potential disadvantage of this technique is that the destination heightfield is also 

adjusted somewhat outside the masked area as the influence mask is spread out for lower 

resolutions (i.e. lower layers) due to the low-pass filtering. In Figure 6-23 and Figure 6-24 

this shows as a change of the mean height. This might or might not be appropriate for 

different situations.  

Original heightfield 

 
 

 
First blend operation: High-frequency blend 

 

  
Source heightfield 1 Blend strength mask  

 
Result after the first blend, using zero amplitude for the 

lower octaves. Note that only high-frequency detail is copied 
and global features are left unchanged  

 

 
Second blend operation: Low frequency blend 

 

  
Source heightfield 2 Blend strength mask  

 
Result after applying the second blend, using zero amplitude 
for the higher octaves. Note that only low-frequency features 

are copied and high-frequency detail is left unchanged 

 
 

Figure 6-24   Example of two differently weighted multi-resolution blending operations applied to a heightfield 
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6.7 Undo  

Although undo functionality is not an editing feature by itself, it is valuable to have 

during the process of editing. Especially when multiple undo and redo levels are made 

available, the user of such an editing application can experiment more freely with ideas 

and settings.  

 

To undo an executed operation, the effect of the operation will need to be reversed. 

Likewise, to redo an operation, the effect must reappear exactly as it was before. This 

requires storing data structures for each operation that allow these two actions to be 

performed. The most compact way would be to define a functional inverse for each offered 

editing operation. Then redoing would consist of reapplying the operation with the same 

input parameters, while undoing would apply the inverse operation with these 

parameters. Sadly, not all operations have a true inverse function. Even simple push/pull 

brushes that would seem to be easily inversed (subtract some value instead of adding it) 

can cause problems in practice. For example, heightfields are typically clamped between 

some minimum and maximum value, internally represented as pure white and black, 

respectively. This means that all operations will need to clamp the output of an operation 

to this range. Therefore, even a simple add, followed by a range clamp is not guaranteed 

to have a one-on-one mapping and can therefore not always be reversed.  

 

An alternative that is guaranteed to work would consist of simply explicitly storing all 

heightfield versions that were created up to the last operation. This would make it trivial 

to undo and redo an operation. However, naively keeping a copy of the full heightfield in 

memory after each operation has been executed would soon saturate all available 

memory. To limit memory consumption, all but the current heightfield version could be 

compressed. As most operations would not modify the complete heightfield, is makes 

sense to store only the areas that changed. For reasons explained in Chapter 7, it is 

beneficial to partition a heightfield into regularly-sized pages. Operations can then limit 

calculations to the affected pages. Consequently, heightfield pages that are not touched 

by an operation do not need to be stored to be undoable. Furthermore, pages that have 

been changed can be stored more efficiently by calculating the fore-and-after difference 

for each affected page, which could then be compressed by some lossless compression 

algorithm. A fast but effective algorithm was found to be the run-length encoding (RLE) 
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scheme. The above has been implemented in the testbed and easily reached compression 

ratios of 1:100 for typical editing operations like brushing on a large terrain. 

6.8 Evaluation 

Many different editing techniques found in current level and terrain 

editing/generation applications have been discussed in this section. On one hand, level 

editors often provide simple, low-level brushes, that offer much user control but also 

require much work and expertise to create natural-looking terrain. On the other hand, 

terrain synthesis applications offer simulation and procedural generation tools that can 

algorithmically generate one large terrain, only offering a limited number of algorithms 

to choose from and a number of global parameters for the user to tweak. 

 

In an attempt to offer the best of both worlds, high-level brushes are suggested, that 

offer the control of brushes but allow creation of complex terrain like the global synthesis 

techniques. Another advantage of this mixing of options is that the time required to 

calculate the output of procedural synthesis or simulation techniques might decrease, as 

the user might often only brush over (and thus require evaluation of) relatively small 

areas. Support for simple brush strokes, together with user-editable settings and presets, 

provide a recognizable interface to users of Photoshop and other image editing 

applications. Brush-based range and domain mapping might assist designers in creating 

natural effects in an efficient way. These brush tools would all be fairly intuitive as their 

effect should be directly visible. Also, the types of parameters are intuitive and could be 

made consistent, or at least be loadable as user-created presets. 

 

Offering the possibility to use Photoshop-like effect layers could further enhance the 

potential of any terrain editing tool. This would allow more order-independent creation of 

the terrain, thus better supporting the iterative design process described in Chapter 3. 

For example, sections of the terrain could be placed in different layers, letting the user 

translate or rotate the content of these layers separately. This way, mountain ranges 

could be moved in an instance, without destroying any detail or undoing any work.  

 

This chapter has discussed many ideas and techniques. Creating an editor that offers 

all these different options would be a great asset. If, in addition, such an level editor 
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would also directly communicate or be integrated with the editor that is used for any 

other assets in a game level, the workflow and efficiency of a level designer would be 

greatly improved. But, as discussed in Chapter 3, for a (brush-based) iterative design 

system to be successful, performance is critical. A brush-based terrain editor with a large 

toolset could only be used to its full potential if and only if the brushes’ influence can be 

calculated fast enough to make it function at interactive rates. As current procedural 

synthesis tools can take many minutes to generate a heightfield of reasonable resolution, 

this will require a flexible, but very fast pipeline. Even though a brush stroke might only 

affect a relatively small area of a terrain, a naive implementation of the discussed 

procedural algorithms would have difficulty with producing results at interactive rates. 

To improve this situation, either the algorithms themselves or the (hardware) efficiency 

of algorithms’ implementations could be optimized. Unfortunately, it is often impossible 

to optimize the algorithms any further. However, a relatively new source of available 

computational power on PCs might be used to improve the efficiency of algorithm 

implementations: the graphics processor. The remainder of this dissertation is dedicated 

to this goal, exploring and explaining this idea, setting up a pipeline and implementing 

several brush-based algorithms as different test cases.  

  



Effective GPU-based synthesis and editing of realistic heightfields – G.J.P. de Carpentier 91 

7 Parallel Processing 

Editing algorithms designed for heightfield usually change many height samples per 

update. Although most editing algorithms would be quite simple, the total number of 

times these algorithms must be evaluated can be vast. As updates are viewed preferable 

in real-time or, at least, at interactive rates, it is important to get the most out of the 

available hardware.  This is especially true for operations that have user-interactive 

brush strokes as their input, as this type of user input is most powerful and user friendly 

when feedback is instant during brush stroke activity. However, current applications 

have great difficulty in achieving this for larger areas. Procedural generation of a large 

terrain can easily take minutes to finish for complex algorithms. Furthermore, 

applications that support brush-based editing are typically only practical when small 

brushes are used, as this limits the amount of data to be modified in real-time. As today’s 

personal computers are increasingly more capable of executing calculations in parallel 

through multi-core CPUs and graphics cards’ GPUs, it makes sense to try to parallelize 

heightfield operations. This chapter discusses different technologies that are assumed to 

be available on target computers, and discusses the details of the heightfield operation 

pipeline that has been implemented in the testbed. 

7.1 Multi‐core CPU 

Nowadays, many newer workstation PCs come with a double-core or even quad-core 

CPU. To get the most out of these systems, tasks must be threaded to be able to divide 

the load over the available cores. Threading an application often requires use of a 

threading library, substantial software design planning and, preferably, much knowledge 

and experience in the field of parallelism. Creating thread-safe, efficient applications has 

proved to be quite difficult in practice. Bugs are difficult to detect and reproduce, 

debugging is complicated and bottlenecks are harder to reduce. Even so, applications that 

require performance are forced to follow this trend, as multi-core systems are probably 

here to stay. Intel offers dual-core and quad-core technology in their Intel Core 2 and 

Intel Xeon product ranges. AMD offers dual-core and quad-core AMD Athlons and AMD 

Opterons. 
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Several software libraries and compiler extensions are available that aid in the 

creation of multi-threaded code. For example, OpenMP and Intel’s Threading Building 

Blocks are multi-platform shared-memory extensions. Special language directives and 

routines assist the compiler in efficiently splitting low-level similar tasks (e.g. loop 

constructs) over the available processing units and offers typical parallel control 

structures like critical sections and barriers. This type of library is most valuable when 

similar or identical tasks must be executed for large amounts of data, leveraging data 

parallelism. Alternatively, libraries like MPI, POSIX Threads and Windows Threads offer 

control at a different level, by letting the caller create, pool, synchronize and destroy 

individual threads which may or may not be executed on the same computer, each with a 

separate task or routine. For example, a computer game could have separate threads for 

rendering, character behavior, route planning, physics simulations and resource loading. 

This type of parallelism is called task parallelism and is typically more bug-prone and 

requires more expertise. The many possible, less synchronized interactions between 

(many) different tasks typically makes task parallelism more difficult to comprehend, 

foresee and test than data parallelism. 

 

Heightfield operations typically consist of doing the same calculations for large 

amounts of data. Executing these algorithms in parallel by assigning a different piece of 

affected terrain to each available core seems promising, as this would reduce the largest 

bottleneck in a typical terrain editor. This is a typical example of data parallelism, so 

libraries like OpenMP would best fit this type of application. 

7.2 Graphics Programming Unit 

Another possibility to increase performance on PCs is to offload calculations to the 

graphics card. Although typically only used for rendering, the graphics card can also be 

used for purposes other than rendering graphics due to recent advancements in power 

and flexibility. While the graphics pipeline used to be fixed in functionality, the support 

for pixel and vertex shaders opened the doorway to executing small, custom programs 

instead. Attracted by the theoretical peak performance and the high performance-per-

dollar, both scientists and game programmers have found new ways to apply this 

computing power to new domains. Using the graphics cards’ processors (i.e. GPUs) for 

purposes other than 3D scene rendering is often referred to as General-Purpose GPU (i.e. 
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GPGPU). Applications include fluid simulation, collision detection, molecule folding 

simulation and general-purpose sparse and dense matrix solvers, to name a few. See 

http://www.gpgpu.org for more examples and details. Another good reference is 

[PHAR05]. 

 

Even though multi-core CPUs 

become faster each year, the 

theoretical maximum computing 

power and memory throughput of 

graphics cards that can be found 

in today’s off-the-shelf 

workstation PCs can be much 

higher than those of CPUs. To compare peak performance of three PCs of potential target 

users, see Table 7-1. The performance is measured in billion floating point operations per 

second (GFLOPS). For the high-end range of target PCs, the GPU can be well over one 

magnitude more powerful than the CPU. Note that the CPU/GPU comparison is not 

entirely fair, as the CPU results are actual synthetic peak measurements [SISOFT], 

while the GPU values are theoretical peak performances [COMPNV].  

 

Another important factor in execution speed is memory access. As can be seen in Table 

7-1 as well, the bandwidth between the GPU and video memory is considerably larger 

than the bandwidth between CPU and main memory. This high bandwidth is typically 

needed for the many texture reads per second when rendering detailed 3D scenes. CPUs 

generally have slower main memory access but have larger memory (L2) caches than 

GPUs, resulting in faster access if (and only if) the amount of processed data is small.  

 

Current GPUs have the disadvantage of supporting only a limited set of instructions 

and are only capable of running algorithms that follow the stream programming 

paradigm. This is typically flexible enough for most graphics rasterization purposes, but 

limits the types of other algorithms they can execute efficiently. Stream processing is a 

simple model that allows the execution of a kernel in parallel over an input data stream 

to output a new data stream. The available computational units can apply the kernel 

independently from each other. For this reason, no explicit synchronization and 

 CPU GPU 
PC1 Intel Pentium 4 530. 

8.6 GFLOPS, 3.5 GB/s 
2 MB L2 cache @ 7.3GB/s 

NVIDIA 6600GT 
4.0 GFLOPS, 16.0 GB/s  

PC2 Intel Core 2 Duo Mobile T7200 
12.6 GFLOPS, 3.5 GB/s, 

4 MB L2 cache @ 25.5 GB/s 

NVIDIA 7950 GTX 
27.6 GFLOPS, 44.8 GB/s 

PC3 Intel Core 2 Duo E6420 
13.0 GFLOPS, 4.4 GB/s, 

4 MB L2 cache @ 18.0 GB/s 

NVIDIA 8800 GTS 
624.0 GFLOPS, 64 GB/s 

 
Table 7-1   Target PC CPU and GPU specifications 
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communication between units is required or supported in this model. Mapping this 

paradigm to GPUs is discussed in Section 7.3. 

 

Processing heightfields is data-intensive. Typical heightfield operations apply very 

similar instructions to thousands or millions of height samples. This makes the large 

bandwidth available to the GPU very attractive, while the typically simple operations fit 

the streaming model quite naturally. As heightfield operation speed is a very important 

factor for the efficiency of a terrain editor user, exploring the possibilities to speed up 

operations by (partly) executing them on the GPU has become a large part of the research 

done for this dissertation. 

7.3 GPU as Stream Processor 

As GPUs were designed to render 

graphics, more general-purpose algorithm 

concepts will need to be mapped to 

supported GPU concepts and set up as 

rendering operations. Although the process 

of ‘rendering’ calculations sounds unusual at first, the translation of concepts is quite 

straightforward once one gets used to the idea. As hardware-accelerated graphics are 

rasterized to the video framebuffer or to off-screen textures, the output of any 

calculations must be made to fit in these textures. To map the straightforward concept of 

stream processing to the GPU, the GPU is set up to render 2D rectangles to an off-screen 

buffer (typically, an RTT texture in DirectX or an OpenGL FBO/PBO). The value 

(normally, a color) of each pixel in the rendered 2D rectangle can then be calculated by 

the GPU using custom pixel shader program. This pixel shader defines the actual 

operation, or stream kernel, and can be made to read from any input textures. The 

rendered rectangle represents the output stream. Likewise, one or more input textures 

can be bound as input streams. The input textures can be sampled at different locations 

within the same pixel shader program if desired. Note that, in this model, each pixel in 

the output rectangle can only depend on its input textures (and constants) but not on 

other values calculated as intermediate results during the rendering of other (e.g. 

neighboring) pixels. 

 

Streaming model <-> GPU 
Input/Output Stream <-> Input/Render Texture  

Vectors <-> 1D texture or constant  
Matrices <-> 2D texture or constants 
Kernel <-> Pixel shader 

Computation <-> Rasterization 
 

Table 7-2   Mapping the streaming model to the GPU  
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The supported input and output texture formats are dependent on the vendor-specific 

hardware capabilities. Also, hardware-accelerated functionality like automatic 

mipmapping, bilinear and trilinear texture filtering and output blend modes might or 

might not be available, depending on the hardware capabilities and used texture format. 

This is one of the drawbacks of using current graphics hardware, as it might be necessary 

to create different optimal implementations of the desired algorithm to run on a wider 

range of hardware. Alternatively, a conservative implementation could be created to run 

on a wide range of hardware but might not use the available graphics hardware to their 

full potential. Not all algorithms can be run on GPUs. Limitations like shader code 

length, number of input textures and floating point precision have a considerable effect 

on the range of algorithms than can be executed on the GPU. Fortunately, with each new 

standard in shader models, the (minimally) supported list of features grows. 

Consequently, more complex algorithms can only be implemented (efficiently) with the 

latest shader models. 

 

In today’s games, rendered 3D scenes look best when rendered with Microsoft 

DirectX’s Shader Model 3.0 or even 4.0. Similar shader standards are defined for the 

OpenGL API. These models define both optionally and minimally available hardware 

capabilities. An example of a minimally available capability is the supported instruction 

set used for the pixel and vertex shaders. Most modern computers support at least 

Shader Model 3.0. But to be able to run these games on older, low-end computers, 

separate code paths are usually written that support earlier and more limited shader 

models, at the cost of visual fidelity. As the computers that would potentially be used by 

level designers are not expected to be low-end, it is assumed that there will be support for 

at least Shader Model 3.0.  This defines a sort of lower bound on the actual hardware 

capabilities that can be expected to be present. 

7.3.1 Shader Languages 

The GPU accepts small programs as pixel and vertex shaders. The shaders can be 

written in assembler code. However, several programming languages exist that are able 

to compile a more higher-level shader language to native machine code, simplifying 

shader program writing. DirectX natively offers the High-Level Shading Language 

(HLSL). OpenGL has its OpenGL Shading Language (GLSL). Both have defined multiple 
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models versions, with each newer version capable of expressing and compiling more 

complex programs. NVIDIA created a standard of its own called Cg, capable of compiling 

to different versions of both HLSL and GLSL. This simplifies the writing of shader 

programs on different platforms. These three languages are similar in language 

constructs and expression power. As these languages are designed to access low-level 

GPU constructs and the latest hardware capabilities directly, the generated machine 

code approaches the efficiency of manually written assembler code. Still, to use one of 

these languages to create a GPGPU application requires knowledge of graphics 

rendering, a manual setup of a GPGPU pipeline and resource management. 

 

There are some even higher-level languages, offering a programming model that is 

more abstracted from the actual GPU hardware. Examples are Sh (http://libsh.org/) and 

BrookGPU (http://graphics.stanford.edu/projects/brookgpu/). Sh code is embedded inside 

native (CPU) C++ code. It uses meta programming, staged compiling and C++ stream 

models to offer an easy to use stream programming model that is easy to mix with 

standard C++ code. Although originally released under the LGPL license, newer versions 

are only released under a commercial license and go by the name of RapidMind 

Development Platform. Alternatively, BrookGPU is a stream programming language that 

comes with a separate Brook compiler that can generate C code from Brook stream 

programs. Both Sh and BrookGPU languages take care of the translation of stream 

operations to GPU shaders, the resource management and synchronization. This greatly 

simplifies stream programming on the GPU, at the cost of losing some efficiency and 

performance transparency. 

 

The latest in GPU programming languages is NVIDIA’s CUDA. Somewhere between 

the levels of the languages mentioned above, it offers direct access to the hardware 

architecture and capabilities of CUDA-capable graphics cards. CUDA offers an extended 

C language to create stream programs with, stream debugging capabilities, common 

stream operations and a stream math library. Although very promising, its use is 

currently limited to the high-end NVIDIA GeForce 8 and 9 series graphics cards.  

 

When the GPU would be used to both execute as heightfield operations and render the 

heightfield in 3D, the resources must be shared between rendering and non-rendering 

tasks. To have the most control over resource sharing and resource management, the 
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higher-level languages like Sh and BrookGPU would be difficult to integrate. CUDA is 

also not an option, as not all target PCs are equipped with the required high-end NVIDIA 

graphics cards. As the Cg language is largely platform-independent and was already 

integrated with the testbed that has been based around the Ogre graphics engine, this 

language is the target language for all GPGPU efforts discussed in this dissertation. 

Consequently, a Cg GPGPU pipeline had to be set up in the testbed for this purpose. 

7.4 GPU Pipeline 

As an input stream must be translated to a texture for the GPU to be able to function 

as a stream processor, heightfields themselves must be translated to textures. As 

explained in Section 2.1, heightfields can be represented as grayscale images, with white 

being the maximum height and black being the minimum height. The obvious way of 

translating the concept of a heightfield to textures would be to create one large 2D 

texture and fill this with the height sample values. Sadly, current hardware does not 

allow the creation of arbitrarily large textures. Most of today’s ATI and NVIDIA graphics 

cards have an upper bound on their supported texture size of 4096 x 4096 under the 

assumed DirectX 9 Shader Model 3.0. This means that heightfields larger than this size 

could not be stored in one texture.  

 

Instead of representing the heightfield as one texture, the heightfield can be 

partitioned regularly into many smaller textures, called pages. As heightfield operations 

typically only change a subsection of the terrain that is currently worked on (e.g. 

brushed), only the parts of the heightfield that would be affected should minimally be 

present in video memory before the GPU can be used to execute an operation. Other 

heightfield pages do not necessarily have to be present. This leads to the idea of having 

many smaller textures that can be uploaded individually to the video memory when 

required, managed by a dedicated texture resource manager. This would also increase 

performance during shader execution, as current graphics hardware accesses smaller 

textures faster. As the amount of video memory is typically more limited than main 

memory and must be shared with any buffers required for rendering (Section 5.2.2), the 

full heightfield is stored in main memory. The video memory serves as a cache of recently 

used and to use textures. When the next heightfield operation requires a texture that is 

currently not available in video memory, it is uploaded. Likewise, updated pages are 
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copied back to the main memory when they are needed immediately for CPU operations, 

rendering or before texture eviction. Uploading and downloading pages is achieved by 

transferring the texture data over the graphics data bus.  The AGP bus that was widely 

used until a few years ago would have created a serious bottleneck, as only 266 MB/s of 

data could be transferred from graphics card back to main memory. The newer de facto 

standard PCI Express x16 bus alleviates this bottleneck by supporting up to 4 GB/s in 

both directions [ATIP04]. Still, uploading and downloading data to video memory is 

relatively slow and, so, it is better to cache the heightfield textures in video memory for 

as long as possible. Only when available video memory becomes scarce, the least-recently 

used (LRU) texture is copied back to main memory, if not already done, and evicted from 

video memory. To this end, a custom memory manager could be written, but this 

functionality comes standard with DirectX’s ‘managed’ textures. There, so-called shadow 

copies of the managed textures are kept in main memory at all times and are kept in sync 

with their respective video memory copy. OpenGL supports similar, but more driver-

specific functionality. 

  

Reading and writing simultaneously from/to the same texture is not supported on 

current graphics hardware. So, the input and output stream must differ for any stream 

operation. Also, DirectX managed textures cannot be written to directly. Only special 

textures called Render-To-Texture (RTT) or render target textures can be written to with 

a pixel shader. OpenGL offers framebuffer objects (FBO) and (the older and less efficient) 

pixelbuffer object (PBO) for this purpose. Consequently, when a page texture needs to be 

updated, the original page is set as input to the operation pixel shader which is then used 

to render a full rectangle to some RTT texture of the same size as the page. After the 

rectangle has been rendered, the result in the RTT texture can be copied over the original 

page texture again. As texture creation takes (some) time and pages are typically of 

identical size, it is better to reuse RTT textures between different operations or even 

between any different serially processed pages within the same operation. 

 

The data flow is depicted in Figure 7-1. There, step 1 is executed when an operation is 

about to be executed, but the required input texture isn’t yet available in video memory. 

This step is often not required, because when multiple operations are executed within the 

same area, the chances are that the required input textures are already cached in video 

memory. For step two, one or more available RTT texture are selected and used as output 
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stream container(s). After rendering, the output must be copied back to the managed 

page texture(s) (step 3). When the page is updated, a page’s main memory copy is 

updated (step 4) when the data is needed on the CPU (e.g. for rendering of CPU 

operations) or when the video memory texture is about to be evicted when other textures 

need to be uploaded (step 1) and available memory is scarce.  

Cached page textures

Cached RTT textures

Unrequired 
page textures

Required page 
textures

(input streams)

Operation-specific 
pixel shader 

(stream kernel)

General-purpose 
quad rendering 
vertex shader

General-purpose 
quad  vertex 

buffer

GPU
Output RTT 

textures
(output streams)

Other 
available RTT 

textures

Full heightfield page store

Copies of all 
page textures

(3). Texture copy

(2) Render output

G
PU

 &
 V

id
eo

 m
em

or
y

G
ra

ph
ic

s
bu

s
M

ai
n 

m
em

or
y

(1
) T

ex
tu

re
 u

pl
oa

d

(4
) T

ex
tu

re
 d

ow
nl

oa
d

3D rendering data

Tile index & 
vertex buffers

Terrain detail 
RGB textures

 
 

Figure 7-1   Data flow diagram for the GPU operation pipeline running a single stream kernel 

This simple streaming model does not allow for any sharing of intermediate calculated 

data between different (e.g. neighboring) height samples. To support more complex 

operations that would require these interactions, this simple model can be split into a 

model that executes multiple, (serially) cascaded kernels. Then, intermediate result 

streams can be rendered and used as input to the next kernel in the cascade. This can 

also be used to execute iterative processes or split a kernel into a shared common part 

and an operation-specific part. To support cascaded kernels, step 1 and 2 in Figure 7-1 

would be executed as normal for the first kernel in the cascade. As RTT textures can both 

be written to and read from (although not simultaneously), the RTT output texture filled 

by the first kernel can serve directly as input to the second kernel. Obviously, a different 

RTT output texture is required to render the output of the second kernel to. To extend 

this idea to cascades of more than two kernels, one could use one RTT texture per kernel. 

However, as each render operation is completed before the next is started, it is also 
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possible to use only two RTT textures. Then, one RTT is used to read from and the other 

is used to write to. After the render operation for some kernel has been completed, the 

role of the RTT textures is reversed and the next kernel in the cascade is executed and so 

on. This process is often referred to as buffer ping-ponging and is, obviously, more 

memory friendly. After the last kernel has been executed, the RTT texture that was last 

written to is copied back to the page texture according to step 3 and 4 in Figure 7-1. 

 Fast copy 
kernel  Custom kernel with 

one input read  Custom kernel 
with two input 
reads 

 Custom kernel 
with four input 
reads 

 
 

Figure 7-2   Applying a circle-bound operation with a simple 
kernel, only reading its old value 

 
 

Figure 7-3   Applying a circle-bound operation with a kernel 
that requires the old values of neighboring positions as well  

7.4.1 Render Rectangles 

A local heightfield editing operation might only overlap partially with some page. For 

example, in Figure 7-2 and Figure 7-3, the four pages (the black-edged squares) are 

overlapped only partially by the circular (brush) editing operation. Imagine some ‘blob’ 

operation kernel that reads back each previous height value and adds a small value to 

this, based on the proximity of each height sample to the circle’s center. Height samples 

on and outside the circle are left unchanged by this kernel. Then, the bounding rectangle 

of the circular area can easily be used to select which heightfield pages will be affected by 

this operation. These pages would then undergo the steps described in Figure 7-1, each 

rendering and updating a full page update using the kernel. This kernel could simply be 
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used to render the affected pages as a whole, as the influence of this specific kernel 

outside the circular area would be reduced to zero, thus simply copying the old values. 

 

However, executing this circular operation kernel for the unaffected areas inside a 

page is typically more computationally intensive than simply copying these areas directly 

into the RTT texture using a fast copy kernel. As an optimization, the render rectangle 

used to render the updated page to the RTT texture can be split into multiple non-

overlapping rectangles, together covering the full page seamlessly. Then, each of these 

rectangles can be rendered independently using any selected pixel shader. By taking the 

bounding rectangle of the total area that will be changed by some operation and 

intersecting this rectangle with some page’s own full bounding rectangle, the affected 

rectangular subregion per page is calculated. This subregion forms the render rectangle 

that will be executed with the circular operation’s kernel for some affected page. The 

page’s full rectangle minus the affected subregion can be split into eight more rectangles: 

one per Moore neighbor (see Figure 6-7). When the affected subregion touches one or 

more edges of the page’s own full rectangle, one or more of these eight rectangles will be 

degenerate (i.e. have zero area) and can be ignored. The non-degenerate rectangles can 

then be used as render rectangles with a fast, dedicated copy kernel to copy the regions of 

a page that are unaffected by the circular operation to the RTT texture. This is visualized 

in Figure 7-2. There, the circular brush touching the four pages will result in a total of 

four (shaded) render rectangles that will use the actual circular operation and nine non-

degenerate (white) render rectangles that will use the dedicated copy kernel. 

 

Special care is needed when some operation not only requires the previous height 

value of each sample, but also requires the previous values in its neighborhood. An 

example of such an operation is a blurring filter, limited to some circular shape. The 

problem with retrieving neighboring samples is that not all neighbors will necessarily lie 

within the same page. More precisely, when values must be read that are maximally K 

samples away in a N x N page with 2K < N, the (N – 2K) x (N – 2K) samples that lie at 

least K samples from the page’s edges will find all required values inside the same page. 

However, the samples that are less than K samples away from a page’s border will miss 

some values in their (2K+1) x (2K+1) neighborhood. These K-border samples will need 

complementary lookups from neighboring pages to lookup their missing values. For 
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example, all K-border samples in Figure 7-3 are shaded in a darker grey, requiring two or 

more pages to read from.  

 

Heightfield sample lookups must effectively be implemented as texture reads in the 

GPU pipeline model. Hence, the lookups for the K-border samples/pixels must be 

implemented as reads from multiple page textures. One way of implementing this would 

be to let the kernel’s pixel shader conditionally determine which texture to use for each of 

the up to (2K+1) x (2K+1) sample reads per rendered K-border output sample. This, 

however, would be very slow on current hardware, as conditional branching is ill-

supported. Although some GPUs can perform branching quite efficiently, many (namely 

NVIDIA) GPUs still perform branching by executing all code branches and then using the 

conditions to ‘blend’ between all calculated branch outputs.  

 

To make this process more efficient, the operation’s rectangle can be split into smaller 

rectangles that have similar properties concerning the pages required a the neighborhood 

lookup. More specifically, the rectangle that specifies a page’s affected area (e.g. the 

shaded areas in Figure 7-2) is intersected with the following nine rectangles that cover 

the entire page: one (N – 2K) x (N – 2K) area (at the page’s center) and the eight 

rectangles in the Moore neighborhood that cover the remaining parts of the page (which 

are K samples broad and/or high). Again, one or more of these resulting intersected 

rectangles can be degenerate. For example, only the lower-right page in Figure 7-3 

contains all nine intersected areas as non-degenerate rectangles. Note that the areas that 

are not affected by the operation are not split. The degenerate rectangles can safely be 

discarded. The non-degenerate rectangles form areas of different amounts of required 

input textures. And so, part of the earlier mentioned branching is no longer required in 

the kernel. For example, the kernel that will be executed on the center rectangle is able 

to read all its (2K+1) x (2K+1) samples from one texture, ignoring all boundary 

conditions. Any rectangles that are formed from the horizontal and vertical Moore 

neighbors of this central rectangle will need to read from both the current page and 

exactly one neighboring page, which will be same for the complete rectangle. Any 

rectangles formed as the diagonal Moore neighbors will read from the current and three 

neighboring pages. These three cases (central rectangle, horizontal/vertical and diagonal 

Moore neighbor) are depicted in Figure 7-3 as different shades of grey within a page.  
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Still, the rectangles that require more than one page texture to look up values in their 

(2K+1) x (2K+1) neighborhood per sample need some way to do this efficiently. Current 

hardware supports different texture address modes, defining what will be returned when 

a texel (i.e. texture element) that lies outside the texture is looked up. One of these modes 

will return a custom color. By using this mode and setting the custom color to black (i.e. 

zeros), a lookup can be done in all bound input page textures and the summed result will 

be the height. This is done for every of the (2K+1) x (2K+1) sample positions. This is 

guaranteed to work because adding ‘black’ to any height value will leave the value 

unchanged and the areas covered by any input pages are guaranteed to be mutually 

exclusive and form one seamless heightfield. Note that the central rectangle will 

consequently look up only the value in the current page, all pixels in the 

horizontal/vertical Moore neighbor rectangles will sum the result of two lookups and all 

pixels in the diagonal Moore neighbor rectangles will sum the result of four lookups. 

 

By splitting the affected area in different multi-texture-read regions and simply 

summing multiple texture reads together, no conditional branching is required, while 

still limiting the amount of required texture reads. Of course, performance is still best 

when K is only a small fraction of N. Also, values of K larger than N/2 are not supported 

by the technique described above. Hence, once a maximum of K is chosen, a minimum for 

N is easily deduced. However, there are a number of other factors that also influence the 

optimal size of N. Similar to the discussion in Section 5.2.2.3 on render tile size, have a 

small N increases the number of required render calls, thus increasing overhead. Also, a 

smaller N will result in relatively more multiple lookups per pixel when K > 1. 

Furthermore, when the choice for N results in pages that are relatively large when 

compared to typical user operations (e.g. used circular brush radii), larger unaffected 

areas will need to be rendered to the RTT texture and copied back to the page textures, 

increasing overhead as well. As the above techniques have been implemented in the 

testbed, experiments could be conducted and showed N = 256 to be a good compromise 

between the conflicting effects for somewhat smaller and computationally less intensive 

operations. N = 512 seemed to work best for larger and more complex operations.  

 

A last optimization when buffer ping-ponging is used involves updating only the areas 

that could be different since the last render to an RTT texture. When an operation ping-

pongs between RTT textures, only the area that could differ from what already is present 
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in some output RTT needs to be rendered. This is especially important when some 

operation is applied that would consist of many small updates within the same area. This 

optimization needs careful tracking of the contents of each RTT texture and the areas 

affected by its associated operation. When an RTT texture is found to contain a previous 

version of the page to be rendered, the page’s render rectangles can be limited to (i.e. 

intersected with) the areas of that previous version that would be different. 

 

The graphics library, driver and GPU work together to queue any render calls and 

asynchronously execute the first render call that has all its dependencies (e.g. input 

textures) available. While the GPU is rendering, the CPU is free to do other things. 

However, when the CPU requests some rendered or copied data from the graphics card 

while this information is not yet available, the CPU is temporarily stalled. For example, 

this could happen when the CPU requests an updated page in order to update the 

rendered 3D geometry, but step 1 through 4 in Figure 7-1 have not yet been fully 

completed for that page. As stalling would waste valuable CPU cycles, it is better to do 

something else on the CPU first after an operation render call has been dispatched and 

the result is needed. The testbed implemented this by queuing all page operations and 

interleaving one or a few page operation calls with actual 3D geometry render calls, and 

waiting one frame before the result of any sent page operation calls is requested again. 

This way, steps 1 through 4 from Figure 7-1 are given one frame the time to finish before 

being forced by any CPU request. By interleaving scene rendering and operation 

rendering, the influence of actual terrain editing on the frame rate is automatically 

limited. However, this might increase the total processing time unnecessarily on high-end 

machines, as the GPU might not be fully loaded with work at all times. Even so, the 

benefit of interleaving work and scene rendering on more low-end machines makes it a 

simple but valuable policy, as users on such machines would benefit greatly from a 

workable frame rate. 

7.4.2 Texture Formats 

As the graphics card is traditionally used for rendering color graphics, the standard 

graphics pipeline has been specialized for this purpose in many ways.  For example, most 

shader instructions can work both on scalars and vectors of up to four components. These 

vector components are typically used as red, green and blue (and possible alpha) color 
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components or X, Y and Z (and possibly W) space components. When more components 

are needed, an array of scalars or vectors can often be used. Hardware support for this 

functionality is well standardized in the shader models. Also, practically all modern 

graphics cards that support Shader Model 3.0 can handle mathematical instructions that 

work on 16-bit (half) and 32-bit (single) precision floating point numbers. However, this 

level of standardization can currently not be expected for the supported input and output 

texture formats.  

 

Hardware vendors are free to implement only a subset of the multitude of component 

and bit depth texture format combinations. Also, support for a texture format can only be 

offered partially. For example, the supported list of formats that can be rendered to is 

typically only a subset of the list of formats that can be read from. Furthermore, some 

formats might not support bilinear or trilinear filtering when read from, or automatic 

mipmap generation or blending with the previous texel (i.e. texture element) color when 

written to.  

 

The most well supported format is called R8G8B8A8, offering four 8-bit components. 

Practically all modern hardware is capable of reading and writing to this format will full 

filtering and blending support. Other formats like one-, two- and four-component 16-bit 

integer, 16-bit floating point and 32-bit floating point formats are often also available for 

reading and (to a lesser extent) writing, but often with limited options for filtering and 

blending. For more details, see [NVID05] and [PERS07]. 

 

Not all formats would be usable for heightfields. As each distinct value in a texture 

represents a different height level, having too few bits can lead to artifacts. 8-bit integer 

heightfield will clearly show distinct levels, especially when the dynamic height range in 

world space is large. 32-bit heightfields are typically stored as single precision floating 

points normalized between 0 and 1, so only just over 23 bits (the mantissa) would be used 

effectively. 16-bit integer formats offers a compromise between accuracy and storage 

requirements. For most applications, the difference between 16-bit integer and 32-bit 

float heightfields would be unnoticeable, while the integer format would require only half 

the storage space. Another option is 16-bit half-precision floating point numbers, a format 

supported by many GPUs, but this would only offer just over 10 bits when using 

normalized values. Although better than the 8-bit integer format, some iso-level artifacts 
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can still be observed when this format is used. Consequently, the 16-bit integer format 

was found to offer the best tradeoff between quality and memory consumption. 

 

The implemented testbed is able to import from and export to different formats at 8, 

16 and 32 bit depths. However, only 16-bit integers are used internally for the reason 

described above, as well as to minimize conversion errors, as this is the format used by 

most other heightfield applications. Below, the implementation details of the testbed are 

discussed concerning used texture formats and its required workarounds. 

 

When implementing heightfield operations on the GPU, the edited heightfields are 

best split into page textures, as described in Section 7.4. The most ideal situation to have 

16-bit integer heightfields would be to use single-channel 16-bit integer textures, often 

referred to as SHORT16_L or SHORT16_R textures. This format is well supported by 

most modern graphics cards. However, several tests have been conducted with this 

format, and it has been found that some machines that supposedly did support it silently 

introduced iso-level artifacts. For example, when a 16-bit integer was read from a texture 

and written directly back to a new 16-bit integer texture, some height resolution was lost. 

It is assumed that these machines treated the 16-bit integers internally as 16-bit floats 

when read and (automatically) normalized between 0.0 and 1.0 during a texture lookup 

by a pixel shader, resulting in an effective resolution of about 10 bits (the mantissa). 

Although no documentation was found to support this assumption, it would explain the 

artifacts. As this format proved to be unreliable, a different format had to be used. 

 

A usable alternative to the 16-bit integer textures would be 32-bit floating point 

textures, often called FLOAT32_R or FLOAT32_L textures. This format offers plenty of 

resolution (about 23 bits effectively). Although only 16 bits of resolution are required, 

having more resolution helps to prevent small accumulation errors due to repetitive 

rounding in the operations. However, this format would double the memory storage 

requirements and the used memory bandwidth. Also, it is less widely supported than 8 

and 16-bit formats. 

 

The format chosen for the testbed is the widely-supported multi-component format, 

called R5G6B5. This format has a red, a green and a blue component, totaling to 16-bits 

per pixel. By packing and unpacking these colors in the pixel shaders, a full 16-bit format 
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can be emulated. Also, by carefully choosing the way the format is packed on the GPU, 

the CPU can treat the 16-bit RGB colors simply as 16-bit integers when reading from and 

writing to the RGB pixels. The R5G6B5 texture components consist of 5-bit, 6-bit and 5-

bit unsigned integers for the red, green and blue components, respectively. Even though 

the packing and unpacking causes overhead in the pixel shaders, is has been found to be 

roughly as fast as direct use of any available 32-bit floating point formats. This is 

probably due to the smaller bandwidth requirements. Obviously, the relative overhead of 

packing and unpacking will decrease for more complex shaders. Hence, operations should 

be combined in as less shaders/steps as possible. This also has the advantage of 

minimizing any rounding of intermediate results to the 16-bit storage resolution. So due 

to the smaller memory footprint, better support for this format and the roughly equal 

performance, it is preferred over the 32-bit floating point format. Another disadvantage of 

32-bit floating points is that bilinear (and trilinear) access to textures and output 

blending is typically ill supported on current hardware. In contrast, R5G6B5 filtering and 

blending is generally supported. However, the packing algorithm renders this 

functionality useless. So this functionality must be emulated either way. For example, 

when bilinearly filtered texture access is desired, it must be emulated by blending 2 x 2 

nearest-sample (unpacked) lookups together. 

 

One problem with implementing bit packing on the GPU is the lack of integer support 

and bitwise operations. When the shader samples a texture, it will automatically rescale 

its values to exactly fit the floating point range [0.0, 1.0]. This means that the three 

components in a R5G6B5 texel are internally divided by 31, 63 and 31, respectively. 

Likewise, when any color is written to this format, the floating point color components 

are rescaled and rounded to fit in the 5-bit, 6-bit and 5-bit integer range again, 

respectively. This automatic scaling can result in inaccurate results when not accounted 

for. For the testbed, several packing and unpacking routines have been designed and 

implemented. The code in Figure 7-4 proved to be the most reliable under different 

hardware configurations. These unpack and pack routine is called by all operation pixel 

shaders every time a texture is read or written to, respectively. Components are laid out 

to match the little-endian CPU 16-bit unsigned integer format for transparent 16-bit 

integer CPU access. Note the floor(x) (i.e. round to largest integer smaller or equal to x) 

and round(x) (i.e. round to integer nearest to x) instructions. These were found to be 
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required to counter any input and output scaling inaccuracies. frac(x) calculates x – 

floor(x) and dot(u, v) calculates the dot product of two vectors.  

 

 

float unpackFromR5G6B5 ( float3 pck ) { 

    const float3 scales = { 8.0f, 1.0f / 8.0f, 1.0f / 256.0f }; 

    const float3 maxs   = { 31.0f, 63.0f, 31.0f }; 

    return dot ( round ( pck * maxs ), scales ) / 256.0f; 

} 

 

float3 packToR5G6B5 ( float value ) { 

    const float3 scales = { 1.0f, 32.0f, 2048.0f }; 

    const float3 ranges = { 32.0f, 64.0f, 32.0f }; 

    const float3 maxs   = { 31.0f, 63.0f, 31.0f }; 

    return floor ( frac ( value * scales ) * ranges ) / maxs; 

} 

 

Figure 7-4   R5G6B5 packing and unpacking Cg routines 

This concludes the general considerations and specific implementation details for the 

(GP)GPU pipeline. In Chapter 8, a number of specific kernels/pixel shaders are discussed 

that were implemented in the testbed to produce a range of different brushes for the user 

to work with.  
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8 GPU Editing 

To test the potential benefit of today’s GPU for the use in heightfield editing, several 

heightfield editing brushes/algorithms discussed in Chapter 6 are implemented on the 

GPU using the pipeline discussed in Chapter 7. Implemented brushes include the simple 

pull/push brush, a smoothing brush and several noise brushes.  

8.1 Brush System 

With a brush tool the user can draw a path with the mouse or tablet. The heightfield 

areas covered by the brushed path are modified in real-time. When the tablet is used, the 

stylus’ pressure data could be used to influence the strength at different points on the 

path. To apply the operation, the brush path is discretized into instances. Each brush 

instance performs an actual terrain modification at its given position and strength on the 

path within a fixed brush shape (e.g. a circle). In the most basic form, each of these 

modifications would consist of one GPU operation, as described in the previous section. 

Obviously, a brush path is better approximated when more brush instances are used.  

 

 Some simpler terrain editing applications 

discretize a path by applying exactly one 

brush instance at the current mouse position 

for each frame. Each frame, the mouse 

position is used to shoot a ray from the 

camera onto the 3D terrain. Then, this 3D 

position is used to calculate the 2D position 

in heightfield sample space. Using exactly 

one instance per frame has the drawback of being frame rate dependent. While fast PCs 

might be able to draw continuous strokes with this system, slower PCs might leave large 

gaps between brush instances. Also, the instance density can change with the complexity 

of the operation type and the brush radius, as this typically changes the time required to 

apply a brush instance. See Figure 8-1. 

 

 A more robust and consistent solution is to derive a continuous brush path from the 

different mouse positions (in sample space) and then create brush instances on this path 

 
Figure 8-1   Effect of applying a circular brush as the 
users follows a circular stroke. Left ‘circle’: applying 
one brush instance per frame on a low-end PC. Right 

‘circle’: applying instances discretized from a 
continuous brush stroke spline 
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with (roughly) equal spacing between them. To this end, the mouse positions are used to 

form piece-wise cubic Catmull-Rom splines [CATM74]. Then, the length of each spline 

piece (i.e. the Catmull-Rom spline defined by each set of four subsequent positions) is 

estimated by evaluating the spline piece at several points and summing the Euclidian 

distances between these evaluated points. These lengths are then used to calculate the 

parameter at which the next brush instance should be placed to be roughly some given 

distance away from the previous brush instance. See Figure 8-1 to compare results from 

this technique to the simpler one-instance-per-frame technique. Smaller spacing 

distances lead to more continuous results but take more time to calculate. Also, very 

small spacing distances can lead to small artifacts due to accumulated rounding errors of 

the very small changes per brush instance along the path. The testbed allows the users to 

influence the used spacing distance and combines this number with some simple 

heuristics based on the current brush radius, falloff and power to calculate the preferred 

distance.  

 

Both this dissertation and the implemented 

testbed assume circular brush instances as a test 

case, but other shapes could be added easily. For 

example, a user-specified bitmap could be used 

instead. But for the sake of clarity, only circular 

brushes are discussed in here. These brushes have 

an outer radius (simply called the radius), a falloff 

distance (defined as the difference between the outer 

radius and some inner radius) and a falloff power. 

The radius, distances and positions are assumed to 

be measured in the heightfield’s sample space 

throughout this section. The brush power influences the shape of the falloff area. A power 

of 1.0 results in a linear falloff ramp, at full strength at the inner radius and faded out 

completely at the outer radius. The formulas used in the testbed are given below. 
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Figure 8-2  Effect of power P on brush weight 

for R = 1, F = 0.8, d = 1, C = 0 (1D case) 
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In Eq. 8-1, C is (center) position of the brush instance, R is the radius with R > 0, F is 

the falloff with 0 > F > R, P is the power and d is the maximum amplitude of the brush 

instance. Then, A calculates the weight or amplitude of the brush instance at any sample 

position X. See Figure 8-2. The constants c1, c2 and c3 need only to be calculated every 

time either the radius, falloff or power changes. d is the user-specified brush strength 

divided by the brush instance spacing. This way, the combined effect strength of the 

operation is (largely) independent of the brush instance spacing. 

 

The brush system outlined in this section forms the basis for all brushes implemented 

in the testbed. For the pull brush, the amplitude A is calculated and simply added to the 

previous height value for all affected samples for each brush instance. For the push brush 

A is simply subtracted instead of added to the previous height value. More complex 

brushes would use A as a weight factor to scale the output of other calculations. 

 

Each brush instance results in a heightfield manipulation. When this is implemented 

naively, these manipulations will be sequentially executed as one operation and thus one 

render call per affected heightfield page by ping-ponging between two RTT textures 

(Section 7.4). Consequently, each brush instance in a brush stroke requires a full page to 

be rendered/copied, incurring considerable overhead. This overhead can be reduced in 

some cases by batching multiple brush instances together and executing this batch 

within the same render call. Whether and/or how this is possible depends on the class of 

the operation algorithm. Three classes are distinguished: 

 

1. The algorithm f is linearly decomposable and the result independent of any order in 

which brush instances are applied. : 

1 2 1 2'( ) (...( ( ( , , ), , )..., , ) ( , , ) ( , , ) ... ( , , )n nH x f f f H B x B x B x f H B x f H B x f H B x= = + + +  

 

2. The algorithm f is dependent on the brush instance order, and only depends on the 

local previous height value (and thus not on any neighbor (or farther) height values) to 

calculate each new height value: 

1 2 1 2'( ) (...( ( ( , , ), , )..., , ) (...( ( ( ( ), ), )..., )n nH x f f f H B x B x B x f f f H x B B B= =  

 

3. All other algorithms. 
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Here, H denotes a heightfield as a function of position, x is some 2D position on the 

heightfield and Bi are brush instances (e.g. position and height) for 1 .i n≤ ≤ Algorithms 

(or, more specifically, the pixels shaders) for both the first and the second class can be 

optimized to batch multiple brush instances together. Algorithms of the first class can 

simply add together the weights (Eq. 8-1) for each of any batched brush instances before 

this combined weight is passed on atomically to the rest of the algorithm. Implemented 

brushes of this class include the pull/push brush and several noise brushes. Algorithms of 

the second class have a non-linear causal dependency. Still, brush instances can be 

batched and executed together by subsequently calculating the weight A (Eq. 8-1) and 

applying the change for each of the brush instances in a batch from within the same pixel 

shader. An example of an algorithm of this class would be a push/pull-like brush of which 

the added/subtracted (delta) height depends on the previous height value. See Section 

8.2. Only algorithms of the third class cannot batch instances together in one call, as the 

results from the inter-pixel dependencies for each instance would need to be shared 

within one batched call, which is not supported in the stream programming model. A 

smoothing (i.e. blurring) brush would typically be of the third class.  

 

Please note that the algorithms of the third class also require a slightly more complex 

architecture of the heightfield editing pipeline than depicted in Figure 7-1. The 

combination of the causality between brush instances and the dependencies between 

neighbors do not only allow instance batching, but also require special handling of the 

otherwise independent processing of pages. For example, when a single brush instance 

that covers two pages would cause an update of one page which would then be used as 

input to the other page, the result of the second page would be affected erroneously. This 

is because the same heightfield page store from Figure 7-1 is used both to read from and 

to write to. Therefore, brush instances that cover multiple pages should not write to the 

full heightfield page store directly, but should write to temporary buffers instead. When 

all affected pages are fully updated by a brush instance and stored in temporary buffers, 

these can safely be used to update the full page store.  

 

Experiments have shown that a typical user stroke would require somewhere between 

1 and 100 brush instances per page. To batch the brush instances, new brush instances 

are queued on each frame the user applies a brush stroke. This first-in first-out queue is 

then used to create batches. As each batch will be executed in a single render call using 
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one pixel shader, this pixel shader code must support the batch size. The brush instances 

can be evaluated by the pixel shader in a loop iterating over each instance in the batch. 

But as dynamic looping can be ill supported for Shader Model 3 graphic cards, the batch 

size is best made static, allowing the shader compiler to unroll the loop for efficiency. 

This means that the batch size would have a fixed upper limit, requiring larger queues to 

be spread over multiple sequential operations. But of course, the queue can also be 

smaller than the fixed batch capacity. Two different policies can be used to handle this 

case:  

 

1. Wait for more instances to be queued until the shader’s batch capacity is 

reached. 

 

2. Batch the smaller queue now and set the brush instance weights (d on p. 111) 

of all unused batch slots to zero.  

 

Although computationally more efficient, the first policy would require handling the 

case where no more brush instances are (likely) to be added in the near future. The 

second option wastes some computation power of the GPU but would typically finish 

sooner, as there is no need to wait. The size of the supported batch capacity must be 

chosen carefully. Smaller batch sizes will have more render and copy overhead. Larger 

batches might wait longer for more instances or waste more cycles executing dummy 

slots. After several experiments, the combination of a fixed batch size of 16 brush 

instances and the second policy was chosen for the testbed, as this proved to be the best 

compromise between flexibility, speed and overhead.  

 

Another option would be to compile operation shaders for each possible batch size, 

selecting the shader with the batch capacity closest to the number of directly available 

queued instances. However, compiling a shader can take a noticeable amount of time, so 

compiling multiple versions of a shader should preferably be done once for each target 

machine and then cached between sessions for faster access. This idea has been tried out 

with automatic compilation of shaders for batches capacities of 1, 4, 16 and 64, but the 

gain in efficiency compared to the fixed-16 policy was found to be small and did not 

justify the added complexity to the pipeline and shader design. This method was 

therefore abandoned. 
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8.2 Push/Pull Brush 

Using the brush system as defined in the previous section, it isn’t difficult to create a 

push/pull brush. The pull brush can simply be implemented in a pixel shader by 

evaluating and adding the weights (Eq. 8-1) of all brush instances in a batch, doing a 

texture lookup from the previous page’s texture, adding these numbers together and 

outputting this ‘color’. The texture lookup and the color output must be unpacked and 

packed, respectively, as discussed in Section 7.4.2. The push brush is identical to the pull 

brush but uses a negative d (i.e. brush strength) in the calculation of each A (Eq. 8-1). 

 

An extension to this simple brush would be to let the user specify a mask bitmap and 

modulate the brush instance’s local strength with this bitmap. This could simply be 

accomplished by multiplying each calculated A with the (greyscale) color from an 

associated pixel in this bitmap. Internally, this bitmap would be loaded into video 

memory as a texture. This texture could also be rotated and scaled by the user, with or 

without controllable random variation per brush instance. This would require a texture 

lookup from within the pixel shader at a UV position that is transformed by a matrix 

(constant) that is assigned per brush instance.  

 

Of course, variations on the weight formula can be tried out to get different results. 

For example, the previous formula for A (Eq. 8-1) could be modulated by 

1 min(max(( ( ) ) / ,0),1)upH X C R− − , assuming H, Cup and R are in the same units. Cup 

represents the previous height at the center of the brush instance. Calculating this value 

is best done on the CPU per brush instance and then made available to the shader by 

shader constants, along with the radius, power and position of each of the batched brush 

instances. When applying this modulation of A, a brush is created that functions 

somewhere between push/pulling and leveling (Section 6.1). This simple modification 

makes it easier to create ledges and walking trails on steep mountains, for example. 

8.3 Perlin Noise 

 A number of noise brushes have been implemented for this dissertation. See Section 

6.3 and 6.4 for a more general discussion on implementing noise functions and using 

them to generate mountainous effects. As base noise function, a seedable 2D Perlin 



Effective GPU-based synthesis and editing of realistic heightfields – G.J.P. de Carpentier 115 

function has been implemented as a Cg pixel shader. This shader is loosely based on the 

work described in [GREE05]. See Figure 8-3 for the Cg implementation.  

 

float perlinNoise(float2 p, float seed, uniform sampler2D texH, uniform sampler2D 

texG) 

{ 

  // Calculate 2D integer coordinates i and fraction f. 

  float2 i = floor(p); 

  float2 f = p - i; 

  // Get weights from the coordinate fraction. Uses the quintic interpolator. 

  float2 w = f * f * f * (f * (f * 6 - 15) + 10); 

  float4 weights = float4(1, w.x, w.y, w.x * w.y); 

  // Get the four randomly permutated indices from the noise lattice nearest to p 

  // and offset these numbers with the seed number. The size of the permutation 

  // texture is expected to be 256 x 256. 

  float4 hash = tex2D(texH, i / 256) + seed / 256; 

  // Permutate/hash the four offseted indices again and get the 2D gradient  

  // for each of the four permutated coordinates-seed pairs. The size of the 

  // permutated gradient texture is expected to be 256 x 256. 

  float4 gradientLeft = tex2D(texG, hash.xy) * 2 - 1; 

  float4 gradientRight = tex2D(texG, hash.zw) * 2 - 1; 

  // Evaluate these four independent lattice gradients at p 

  float nLeftTop = dot(gradientLeft.xy, f); 

  float nRightTop = dot(gradientRight.xy, f + float2(-1,  0)); 

  float nLeftBottom = dot(gradientLeft.zw, f + float2( 0, -1)); 

  float nRightBottom = dot(gradientRight.zw, f + float2(-1, -1)); 

  // Bi-linearly blend between the gradients, using weights as blend factors. 

  float4 grads = float4(nLeftTop, nRightTop - nLeftTop, nLeftBottom - nLeftTop, 

                        nLeftTop – nRightTop – nLeftBottom + nRightBottom); 

  float n = dot(grads, weights); 

  // Return the noise value, normalized in the range [-1, 1] 

  return n * 1.530734;  

} 

 

Figure 8-3   2D Perlin noise Cg routine 

Two S x S textures are used as input to this routine: a fixed 2D permutation table 

texH and a fixed 2D gradient table texG. The S x S permutation texture stores four H( ( x’ 

+ H(y’) ) mod S ) values, one for ( , )x y⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ , one for ( , 1 )x y +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ , one for ( 1 , )x y+⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

and one for ( 1 , 1 )x y+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  as the texture’s R, G, B and A 8-bit channel values, 

respectively. The resulting redundancy between color channels and neighboring texture 

pixels has the advantage of requiring only one texture lookup instead of four to retrieve a 
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hashed number for four neighboring noise lattice points. For the implementation, S was 

chosen to be 256. The original permutation table written by Ken Perlin was used to 

create texH. The S x S gradient texture texG stores ( G( H( i mod S) mod M); G( H( j mod 

S) mod M) ) : two independent 2D gradients for the rehashed i and j values. M represents 

the number of different gradient coordinates, which is 8 for the implementation. Biasing 

the hashed output of texH by a seed number before it is used as input to texG allows the 

creation of S unique noise textures. The rehashing that is done by texG serves to improve 

the randomness of the output between seed numbers. See page 78 for more information 

on the tables G and H. Inspired by the improved 3D Perlin noise algorithm [PERL04], all 

gradients in G are coordinates that are made to lie on the unit circle: 

1 2 1 2(cos( );sin( ))k k
M M

π+ +  for 0 ,k k M∈ < . The angles are chosen to be off-axis to hide 

the regularity of the grid as much as possible. As S is chosen to be divisible by M, each 

angle will be represented in texG exactly S/M times. As texG and texH are stored in the 

R8G8B8A8 format (i.e. a four component 8-bit unsigned integer format), the components 

are limited to [0, 1], so the gradients’ Cartesian 2D coordinates are scaled by 0.5 and then 

biased by 0.5 to map these coordinates to the allowed range before being stored in texG. 

The coordinates are mapped back to [-1, 1] by the shader code at the same lines texG is 

read in Figure 8-3. gradientLeft.xy, gradientLeft.zw, gradientRight.xy and 

gradientRight.zw each represent one unit-circle 2D vector for each of the four points on 

the noise lattice closest to the input position. These four vectors are interpreted as 

gradients and are bi-linearly interpolated by a quintic weight function in both directions 

to evaluate the noise function at (x, y) [PERL04]. See Figure 8-4. For a more 

mathematical treatment, see Section 8.3.3. The average output for this noise function so 

far is zero and its range is 0.5max ( ( [ ] ) ( [ ] ))i x yabs G i abs G i± +  with G[i] being any of 

gradients in texG. Hence, scaling the noise function by 

2.0 /(cos( / 8) sin( / 8)) 1.530734π π+ ≈  will map the function symmetrically to [-1, 1] for the 

chosen set of gradients.  
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8.3.1 Basic Turbulence 

The Perlin noise function defines a band-limited pseudo-random 2D signal. To create 

mountain-like features with this function, noise signals with differently scaled 

coordinates and weights are added together, as described in Section 6.3.4. These summed 

Perlin noise functions are commonly referred to as a turbulence function. This effectively 

creates a noise signal with a frequency distribution that is controlled by the individual 
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a) Pseudo-random 2D gradient for corner (0,0) in some 

single noise lattice cell 
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b) Quintic interpolator weight for the gradient at corner 

(0,0) from a) 

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 
c) Gradient from a), modulated by the weight function 

from b)  
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d) Sum of modulated pseudo-random gradients in the 

cell for corner (0,0), (1,0), (0,1) and (1,1) 
 
Figure 8-4  Example of 2D Perlin noise construction. a) – c) Construction steps for one corner. d) Summed results for 

all four corners in a noise lattice cell 
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noise signal weights and input scales. Each of these noise signals should be as 

independent from the other signals as possible. For this reason, each of the signals uses 

its own seed number. For the lacunarity (the relative coordinate scaling between 

subsequent noise signals), a value close to 2.0 was chosen. Good results were obtained 

with 1.92. The weights of the differently scaled noise signals can be influenced by the 

user but are typically smaller for higher-frequency signals.  

 

In addition to summing differently weighed and scaled Perlin noise functions, 

variations of this function could be used instead. Two already discussed variations on the 

Perlin noise building block have been implemented: billowy and ridged noise. These noise 

variations are simply accomplished by summing over abs(perlinNoise(…)) or 1-

abs(perlinNoise(…)) instead of summing over perlinNoise(…), respectively. See 

Section 6.3.4 and Figure 6-13. 

 

To use one of the turbulence functions as a brush, the output of the turbulence 

evaluation is modulated with the same formula and system used for the push/pull brush 

(see Section 8.2). This allows the turbulence function to be painted with using circular 

brushes, (pseudo-)randomly adding and subtracting heights. The noise seed and the input 

coordinates to the noise function during the evaluation of a brush instance can be defined 

in several ways: 

 

1. User-selected seed number & input coordinates relative to the brush 

instance’s center. Different noise brush instances will replicate the same noise 

signal inside the brush area, only translating relatively to each other. The 

user can change the random noise signal as a whole by changing the seed 

number. 

 

2. User-selected seed number & input coordinates in absolute world space. The 

noise signal is implicitly defined for the whole terrain, independent of the 

position of the brush instances. The brush instances only effectively influence 

the local quantity of noise that is added or subtracted. The user can change 

the terrain noise signal as a whole by changing the seed number.  
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3. Seed number randomly chosen at beginning of each brush stroke & input 

coordinates in absolute world space. Because the seed number will change 

with each stroke, the results are unpredictable. But as a complete stroke will 

use the same seed number, results of individual brush instances are consistent 

with each other. 

 

4. Seed number is randomly chosen for each individual brush instance. The noise 

signal is completely random and will be inconsistent between brush instances, 

making dominant features for a specific noise type stand out less. When brush 

instances overlap (which is typically the case), it is somewhat like adding 

many uncorrelated noise signals, together approaching a random signal with 

the Gaussian distribution, as expected from the central limit theorem.  

 

As a test case, option 2 has been implemented in the testbed. Good and intuitive noise 

brushes were achieved with this system. However, each of these options would probably 

have its preferred applications. Hence, it might be best to offer all options to the user and 

let the user decide which to use for a specific task or effect.   

8.3.2 Quilez Noise 

A relatively new and unknown procedural noise/turbulence variation has been 

described in [QUIL08], an article by I. Quilez. It described an algorithm that extends 

the Perlin turbulence function in an attempt to create less uniform and more natural 

results. In the article, impressive imagery accompanies the description of a code snippet. 

However, an implementation of this (pseudo-)code resulted in lesser-quality output. 

After some experimentation, similar results were achieved, but also showed the 

described theory to be erroneous. The author claimed to describe the analytic derivative 

of the Perlin noise function, that could be used to distort the Perlin turbulence (i.e. 

summed Perlin noise function, see Section 6.3.4) in interesting ways. This proved to be 

incorrect, as the function the derivative was derived for did not produce Perlin noise, but 

behaved more like a simple value lattice noise function (see Section 6.4). Even so, when 

this false derivative was used to distort the turbulence function of summed (correct) 

Perlin noise signals, convincing results were achieved. For example, see Figure 8-5. 
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Note the spatial variation in smoothness and detail, which creates a less statistically 

uniform and more natural landscape.  

 

This noise/turbulence variation defines a complex transform T(n, x, y) function: 

2min

min min

( , , )
( , ), ( , )( )

L
L

L Ll l l l
l ll L l L

nT n x y
N Nx y x y

x y
λ λ λ λ

λ λ= =

=
∂ ∂

∑ ∑
∂ ∂

 

which is then used to transform the Perlin noise function N(x, y) before it is summed 

in the turbulence function: 

max
max
min min

min
( , ) ( ( , ), , )

LL l L l l
L L

l L
H x y w T N x y x yλ λ

=
= ∑  

Starting from the coarsest (i.e. Lmin) noise scale, the T function calculates the squared 

length of the summed (false) 2D gradients/derivatives of the noise function and divides 

the noise signal input n by this squared length. Hence, a large gradient in a noise octave 

L will decrease the noise signals for this noise scale and all subsequent finer noise scales 

or octaves. Consequently, areas surrounding local peaks and valleys in some noise scale 

will be relatively smooth compared to the peaks themselves. Combined with the fact 

that T does not actually use correct derivatives of N but of some other noisy but 

consistent signal, new patterns emerge. 

 

 
Figure 8-5  Comparison of standard Perlin turbulence (left) and ‘Quilez’ turbulence (right) using the same Perlin noise input 
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Similar to the noise and turbulence function discussed in Section 8.3, this function can 

be modulated with the A function (Eq. 8-1) to limit the noise to the area contained by 

individual brush instances.  Also, seed number and input coordinates can be controlled 

and determined as described in Section 8.3. 

8.3.3 Erosive Noise 

Inspired by the idea of using the derivative of the noise function to influence the 

turbulence function, this section introduces a novel noise warping algorithm that has 

been designed specifically to fake the effect of fluvial erosion. See Figure 6-1. 

As fluvial erosion simulation was found to be quite slow on high resolution 

heightfields, having a noise function that is able to approximate some of the fluvial 

features is a great asset.  

 

This algorithm is basically still a Perlin noise-summing turbulence function. However, 

it does not only define a (range) transform function for each summed noise octave, but it 

also influences the positions at which the noise signal of the subsequent noise octaves are 

evaluated (i.e. uses an octave-dependent domain transform).  

 

 
Figure 8-6  Comparison of common ridged Perlin turbulence (left) and new erosive turbulence (right) using the same Perlin 

noise input 
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The 2D derivative over the horizontal plane of the Perlin noise signal, or 

( )( , ), ( , )N Nx y x y
x y

∂ ∂
∂ ∂

, can be interpreted as the gradient defining the local steepest up-

hill direction. When this gradient is used to offset the input position at which the Perlin 

noise is evaluated for subsequent octaves in the turbulence functions, noise bumps and 

dents will become elongated in the locally steepest direction and become compressed near 

peaks and valleys. This elongation of features somewhat approximates the erosive effect 

of rainfall, carving out small down-hill gulleys into mountains. Note that noise octaves 

are expected to be evaluated from coarsest to finest, as before. Only this way will large 

(mountain) features influence the creation of smaller (gulley) features. In addition to the 

gradient-based input offsetting, both the range and domain transform are made 

dependent on the intermediate total height accumulated during coarse-to-fine octave 

noise evaluation in such a way that valleys will become smoother than peaks. 

 

As the required (correct) derivative of the Perlin noise function is not known to have 

been described in any literature, this is done here. Note that only the Perlin noise 

function in two dimensions is considered here. To get the derivative of the Perlin noise 

signal, the noise algorithm must first be stated as a mathematical function. Defining the 

noise function as N(p) where 2p ∈ℜ , the following helper definitions and shorthand 

notations are defined. 

 
5 4 3( ) 6t  - 15t  + 10t

( , )x y

w t
i p p
f p i

=

⎢ ⎥= ⎢ ⎥⎣ ⎦ ⎣ ⎦
= −

 

( )
( )
( , )

x x

y y

jk x y

w w f
w w f
G G i j i k

=

=

= + +

 

 

Note that G00, G10, G01, G11 denote the four gradients in the Perlin gradient lattice nearest 

to p. The hashing required to get a gradient from a position on the noise lattice is 

assumed to be implicit. For more details, see Section 8.3. The function N(p) can now be 

defined as follows: 
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The derivative of this function can be calculated as follows: 
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Note that ( ) ( )( ) ( ) ( ) ( )    and    x x xw f f w fw x w t xw x tw t
x x t x x t
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= = = =
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 for 

1x x xi p i≤ < + .  However, due to the way ix is defined and the gradient lattice is used, 

this will be true for all ix and thus all px, covering the complete domain. Obviously, this 
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reasoning also holds for the y direction. As explained in Section 8.3, the noise function is 

best normalized by dividing the evaluated output by the theoretically largest output, 

which can be determined from the set of used gradients. But when the noise function is 

scaled by a constant, the derivatives should be scaled by this constant as well. 

 

Now that the derivative has been determined, it can be used to manipulate the 

turbulence function. As this erosion type is visually most evident in mountainous terrain, 

the algorithm is based around the ridged Perlin function instead of the standard Perlin 

noise function. Hence, N’ (x, y) = 1 – abs( N ( x, y ) ). Therefore, 
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This piecewise derivative was found difficult to get good results with. Hence, a rough 

but continuous approximation to the derivative is recommended in this case instead: 
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Because 1 ( , ) 1N x y− ≤ ≤ , the absolute value of the approximation will always be 

somewhat smaller than the exact solution. Moreover, it will approximate zero at peaks in 

N’ (x,y) instead of returning a discontinuous output. 

 

For the fluvial noise type, the following turbulence-like function was designed: 
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Here, N(x, y) is the original 2D Perlin noise function described above. To create 

rougher terrain at the peaks than in the valleys, 
min

( , )L
LS x y defines a factor modulating 
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the octave amplitudes and input distortion, using the intermediate result of coarser noise 

features to weigh the finer features. 
min

( , )L
LD x y  denotes the amount of distortion added 

to the input coordinate of N(x, y). This function sums over the approximated derivatives 

of N’ (x, y), weighted by wl and 
min

( , )L
LS x y , somewhat similar to a standard turbulence 

function. α and β are constants that can be used to tweak the result. Good results were 

achieved with 0.15α = and 1.1β = . This function was largely developed by means of 

experimentation in the implemented testbed. To this end, the function was implemented 

as another operation pixel shader, which could be edited and reloaded while the testbed 

was running. This greatly shortened the iterative development and test cycles. Naturally, 

other functions can be designed iteratively this way as well. 

 

Again, the output from this function can be weighed by the A function (Eq. 8-1) to 

limit its effects to the brushed area. Also, the previously described options for noise 

seeding and different input coordinates can be applied as well. 

8.3.4 Distorted Noise 

In addition to the previously described noise/turbulence types, another type of noise 

can be used orthogonally. The idea is that, like domain warping, a second noise source 

can distort the input to the primary noise function to create even more complex 

procedural results. So, for example, instead of the standard Perlin turbulence function 

 

max
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the turbulence function becomes 
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Another possibility would be to use the following turbulence function. 
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Both algorithms would require three times the amount of noise function evaluations. 

However, the two algorithms result in a different type of distortion. The first algorithm 

distorts each octave of H independently, the second algorithm uses the same (but scaled) 

earlier calculated distortion to each of the octaves in H. Consequently, the first algorithm 

distorts the octaves with noise frequencies similar to the octave’s own frequency band 

and the second algorithm uses all frequencies to distort each octave in H. Both 

algorithms can aid in the creation of more natural terrain, but especially the second 

algorithm really adds unique features to the output. As the calculation of this distortion 

is relatively expensive (as it more than triples the amount of required computations when 

compared to standard turbulence), only the second algorithm has been found to justify 

the added cost. Hence, only the latter type of noise distortion has been implemented in 

the testbed and is available for all discussed turbulence types (Perlin, ridged, billowy, 

Quilez and erosive). 

 

Note that N(x, y), N1(x, y) and N2(x, y) should be uncorrelated noise functions. For this 

purpose, the same Perlin noise function can be evaluated using different seed numbers. 

Like the primary noise types, the distortion noises D1 and D2  can also be easily adapted 

to get billowy and ridged distortion by using a different T(n) function. In the testbed, the 

user is able to influence the distortion noise type (e.g. Perlin, ridged, billowy), the 

distortion weights wd and the octave scales dλ . 

 

This distortive domain warping results in a natural, swirly distortion over the 

horizontal plane. This can break up regularity and uniformity. For example, see Figure 

8-7 to compare the effect of the input distortion to the algorithm discussed in the previous 

section. Note how (almost) straight lines become swirly, complex curves. 
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8.3.5 Directional Noise 

Terrain features in nature are generally not uniformly distributed and direction 

invariant. The most common turbulence functions, however, do create very statistically 

uniform and isotropic virtual terrain. The more complex discussed turbulence functions 

each try to hide these unnatural properties in a different way. Quilez noise varies the 

weights of the individual octaves in a complex way to an attempt to limit uniformity of 

the local terrain roughness (see Section 8.3.2). The fluvial noise type from Section 8.3.3 

creates a random signal that is dependent on the local slope direction, resulting in less 

isotropic terrain. The last noise variation discussed in this dissertation and implemented 

in the testbed is directional noise. 

 

Like distorted noise (Section 8.3.4), this variation is another way to distort the input 

to the previously discussed noise types in order to create new effects and can be used in 

 
Figure 8-7  Effect of noise input distortion. Left: Copy of right side of Figure 8-6, mirrored for easier comparison. Right: Right 

side of Figure 8-6, but distorted by the technique discussed in this section 
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combination with other domain warping techniques. This type of domain warping is more 

user-controlled and less procedural than the distorted noise variation in that is does not 

create more natural terrain by itself, but in the hands of the user, it can aid in the 

creation of interesting anisotropic features. This variation requires the local direction for 

each brush instance in a brush stroke to be calculated. The direction per brush instance 

is then used as input to a function in the operation’s pixel shader that stretches and 

compresses the input coordinates used for a turbulence function. The used turbulence 

function could be any of the algorithms discussed in previous sections.  

 

To implement this effect, the direction of the brush path must be calculated at each of 

the brush instances in the path. Calculating the local brush direction from the smooth 

spline path could be calculated analytically, by a central differences method or simply by 

normalizing the difference between the positions of subsequent brush instances. This 

direction can then be rotated by some user-specified angle a (e.g. 0º or 90º). The rotated 

2D direction vector d for each brush instance is then normalized, multiplied by the scalar 

k, and sent to the pixel shader by means of shader constants, along with each brush 

instance’s position and weight. k is calculated from the user-specified stretch ratio s. This 

ratio specifies the size of the noise features in the rotated direction, relative to the size of 

the noise features in the perpendicular direction. Please note that noise features become 

stretched when the noise input coordinates are compressed. k is calculated from s as 

follows: 

 

11k
s

= − ,   1s ≥  

 

Then, a coordinate p can be compressed to p’ for each pixel in the operation pixel 

shader with minimum effort: 

 

' ( )p p d p d= − •  

 

This p’ coordinate is then used instead of p as input to a noise function. When these 

brush direction-dependent coordinates are used, the noise features are stretched s times 

in the rotated brush direction and are left unstretched in the perpendicular direction.  
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The directional noise can be combined with the distorted noise discussed in the 

previous section by simple adding independently calculated noise to the x and y 

components of p’. This will still create elongated features in a user-controlled direction, 

but will add more natural and complex variation to it. An example of good use of this 

combination would be to set the rotation to 90º and paint along a mountain ridged with a 

large brush. This would create elongated features that look somewhat similar to the 

fluvial noise discussion in the previous section. When the rotation is set to 0º, it could be 

used to apply a brush stroke from mountain top to valley along the steepest slope to get 

even more features that would, for example, supposedly be carved out by water streams. 

See Figure 8-8 for examples of the effect of this brush with different rotations. 

 
 
Figure 8-8  Top view of terrain edited by four circular brush strokes of directional+distorted ridged Perlin noise brush, each 
with different brush settings. Top left stroke: s = 1 (no stretching). Top right stroke: s = 10, a = 0º (features stretched along 

stroke). Bottom left stroke: s = 10,  a = 90º (features stretched perpendicularly to stroke).  Bottom right stroke: s = 10,  a = 45º 
(stretching at an angle relative to stroke). 
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8.4 Smoothing 

The last brush that has been implemented for the GPU pipeline is a smoothing brush. 

In this context, smoothing is considered to be equivalent to blurring. A naïve but correct 

implementation would be to apply a blurring kernel for each brush instance to the 

heightfield. The kernel could be a 2D Gaussian(-like) blur filter with all height samples 

inside the brush radius sampled by the filter tabs. Consequently, the filter would update 

the heightfield by reading and processing many neighboring height samples for each 

sample covered by a brush instance. As explained in Section 8.1, this type of algorithm 

cannot batch brush instances together into a single render call. This means that each 

brush instance will need to ‘ping-pong’ between buffers, increasing the overhead due to 

the many required writes and read-backs.  Early experiments revealed that performance 

was dramatically lower than other implemented brushes. Even the elaborate and 

complex calculations required for the many noise variations discussed earlier were much 

faster to finish than the blurring filter, as those brushes were able to batch brush 

instances together. 

 

One way of improving performance would be to perform an extra layer of indirection. 

For example, the user could be allowed to draw a mask using a special mask brush. This 

mask could, for example, be drawn on top of the standard 3D terrain texturing and would 

be red where brushed and would be transparent otherwise. This mask could be stored in 

a separate ‘maskfield’ and be packed, partitioned and paged exactly like a heightfield. 

Once the mask has been created, the user could then select the smoothing operation. This 

operation would work similarly to other brush operations in that it needs a pixel shader 

to update the individual affected heightfield pages. But unlike other brush operations, its 

pixel shader would use the maskfield as its input to get the local operation strength or 

weight from, instead of calculating the weight based on the distance to the brush center 

for each brush instance. In other words, the individual brush instances are combined 

together into a single input, which is then used to calculate the smoothing all at once. 

This way, all causal dependencies between the brush instances in a stroke are effectively 

collapsed. The result of this technique would differ from the earlier discussed naïve 

technique, and it would not update the heightfield during the actual application of a 

mouse stroke, but the blurred result would be many times faster to calculate. 
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To speed up the blurring process when using large filter sizes, the Gaussian pyramid 

technique discussed in Section 6.6 could be used. In [STRE06], this method has been 

implemented for the GPU. For large blur filters, the number of samples needed for this 

method would be much less than the number of samples needed for the brute-force 

approach. However, it would also require more textures and streams to be coordinated. A 

less correct, but faster approach of applying a blurring filter has been implemented in the 

testbed. Even though this approach is only an approximation of a true blurring kernel, 

results are both fast and convincing. The approach has been inspired by the lattice 

interpolation technique found in the Perlin noise algorithm. This technique shows very 

little evidence of the regular lattice grid in the final result and has a fairly clean 

frequency response. Similar to this idea, the implemented blurring effect uses only a 

relatively small amount of tabs on a virtual lattice of height samples, which are then 

interpolated to create a smooth ‘blurred’ surface from. The lattice height samples are 

simply samples from the input heightfield sampled at regular intervals. Therefore, the 

interval (i.e. the distance between the lattice points) is somewhat related to a true 

blurring filter radius. Unlike the Perlin interpolating technique that interpolates 

gradients of the closest 2 x 2 neighbors, this implementation interpolates the actual 

heights of the closest 4 x 4 lattice neighbors for any point inside the affected area to 

create a smooth ‘blurred’ surface. These lattice control points are interpolated by a 

uniform bicubic B-spline blend function. This separable 2D B-spline defines a weight for 

each of the 16 control point height values using the following formula [CATM78]: 

 

3 3

2 2

j

-1 3 -3 1
3 -6 0 41( , ) B   with  ,   0.0 , 1.0,   0 , 3
-3 3 3 16
1 0 0 01 1

ij i

x y
x yw x y B B x y i j
x y

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅ = ≤ ≤ ≤ ≤⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠

 

 

Here, B is the standard uniform cubic B-spline blend matrix. wij(x, y) calculates the 

weight of control point height value Pij for the surface evaluation at position (x, y). Please 

note that the i and j subscript in Bi and Bj denote the selection of one of the four rows of 

B. The (x, y) coordinate denotes the position inside a lattice cell, is always relative to P11 

and lies in the range [0, 1]2. See Figure 8-9. Hence, the height at the local (x, y) 

coordinate can be calculated as follows: 
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As each point on the sample lattice can be 

several height samples apart, the brushed area 

will be sparsely sampled. This is faster to calculate 

as only 16 samples are required per ‘blurred’ 

output sample, and makes the kernel easier to 

scale in size because the distance between lattice 

points can be varied at will. For example, visually 

pleasing results were still achieved when only 1 in 

82 heightfield samples were on the sampling 

lattice, requiring only one sixtyfourth of the 

heightfield samples to be read. 

 

Again, to use this operation as a brush, the A function (Eq. 8-1) can be used as a blend 

factor to interpolate between the old unblurred input and the output of the blurring 

function discussed above. This will limit the effect of the blurring kernel to the brushed 

area and also offers the user control over the amount of applied blurring.  

 

This concludes the details of the GPU brushes that have been implemented for the 

testbed. Even though many more techniques and variations that have been discussed in 

Chapter 6 could have been implemented for the GPU pipeline, the set of implemented 

algorithms shows the viability of using the graphics processor as a way to speed up 

different types of calculations. Also, novel techniques which proved to be valuable to the 

users have been described in detail. The next section discusses, amongst other things, the 

practical results and considerations of many of the implemented techniques in more 

detail. 

 

P10P00 P20 P30

P11P01 P21 P31

P12P02 P22 P32
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(0,1) (1,1)

(0,0) (1,0)

 
 

Figure 8-9  Interpolation lattice of 4 x 4 samples 
with a lattice spacing of 2  
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9 Assessment 

This chapter will assess the features that were implemented in the testbed editor. The 

testbed that has been created as part of this research is fitted with several of the 

techniques discussed in this dissertation. It allows its users to view and edit heightfields 

using a number of simple and complex brushes, and to import and export heightfield 

from/to several formats. The suggested GPU pipeline is used to design a number of 

simple and more complex brushes, in addition to a number of single-thread CPU 

reference brushes. This chapter assesses the benefits and disadvantages of the discussed 

techniques in practice and discusses any problems and considerations that were come 

across during its development. 

 

The first chapters are mainly aimed at analysis requirements and different ideas and 

methods that could be used to improve heightfield editing in general. The combination of 

complex procedural/simulation algorithms and the more user-controllable brushing is 

identified as a powerful mix. For their application, a number of different brushes have 

been tested. To apply the brushes, a brush path spline algorithm is described and 

implemented. This created a consistent result, independent from frame rate, brush size 

and brush type. Even though this is a standard feature in, for example, Adobe Photoshop, 

it was a considerable improvement over many terrain editing applications. Another 

feature that users have found to be inadequate in many terrain editing applications is 

camera navigation. In addition to the more standard W, A, S, D key up/left/down/right 

camera movement and mouse-controlled camera rotation, the testbed enables the user to 

navigate as if the rendered image of the terrain is a 2D picture. Panning and trucking 

(left/right and up/down) camera movement is accomplished by drag-and-dropping any 

point on the screen: The 3D camera position is adjusted is such a way the originally 

picked 3D (terrain) position under the mouse pointer will be kept under the mouse 

pointer during the mouse dragging in real time. Due to the perspective in the rendered 

image, the amount of absolute 3D horizontal and vertical translation is automatically 

made to depend on the distance between the picked point and the camera. This prevents 

the usual disadvantages with fixed-speed key control. Likewise, camera dolly (in/out) 

movement can be accomplished by picking any point on the screen with the mouse and 

then ‘dragging’ to or from this point at will. Again, the amount of movement is made to 
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increase with distance to the picked point. User feedback verified that this combination of 

controls combined both navigation speed and precision and felt quite intuitive. 

 

Tests with brushes that naïvely apply low-level single-threaded algorithms showed 

that modern computers are powerful enough for these to be executed at interactive rates 

without the need for complex optimizations and parallelism techniques, as long as the 

used brush radius is relatively small. However, when using reasonably large brush sizes 

(for example, covering 100000+ height samples), performance did degrade noticeably. For 

procedural synthesis brushes to be considered working at interactive rates, the maximum 

practical brush size was reduced even further. All brush strokes are applied internally by 

working through a queue of brush instances. Hence, operations that are too demanding to 

be handled in real-time result in delayed terrain updates. Consequently, the naïve 

implementation resulted in updates that lagged or trailed (far) behind the user’s current 

brush stroke activity when too large or too complex brushes are used.  

 

To optimize the execution speed of brush operations, the graphics cards that are 

typically available in target PCs were used. The implemented GPU pipeline allowed 

access to their computational power and large bandwidth. It was found that optimized 

GPU brushes were roughly up to one magnitude faster than their single-threaded CPU 

counterparts on the more high-end target PCs and offered about the same performance 

on low-end target platforms. But as the GPU pipeline causes some extra overhead and 

asynchronous delays, its full potential was only realized for operations that affected 

relatively large areas. Also, different heightfield operation algorithms required different 

pipeline features and could not all be implemented with the same efficiency. 

Furthermore, several workarounds were needed to get the results working at the bit-

depth required for heightfields, causing an additional performance penalty. But as 

graphics hardware flexibility and standards are improving in a rapid pace, more efficient 

use of hardware will soon be made possible in the form of more powerful programming 

constructs and common support for currently optional and exotic features.  

 

As GPUs are currently still specifically created to render graphics, more general 

concepts were needed to be mapped to render-specific concepts. Also, GPU program 

debugging tools are currently still relatively primitive. Both factors hindered 

development and contributed to the fact that writing single-threaded operations took only 
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a fraction of the time required for the development of the GPU pipeline and its 

operations. Also, GPU processing is difficult to make reliable under all situations and all 

(expected) target platforms. For example, uncommon situations like a ‘lost device’ must 

be handled properly. This is a DirectX state that results in suddenly corrupted data in 

video memory and can be caused by external factors like switching to another 3D 

application. Also, because the support of many capabilities of graphics hardware can 

differ per vendor and generation, it is difficult to create software that copes with this 

efficiently. Typically, either non-optimal but safer programs are created, or different code 

paths are developed for different platforms. Even then, it is difficult to say whether the 

program will behave as expected on all targeted platforms, unless explicitly tested. For 

example, some hardware-specific features and limitations were found to lack official 

documentation. Also, a tested target platform would sporadically produce erroneous 

output when some brushes were executed on the GPU. After extensive testing, the 

problem was found not to lie in the testbed but either in the display driver or the actual 

hardware itself. Even so, standards, and with them the minimally available hardware 

capabilities, are improving. Each new generation of graphics hardware is more flexible 

and more powerful, making the discussed drawbacks, workarounds and limitations a 

temporary inconvenience.  

 

Overall, the testbed was found to be a valuable step in the good direction. However, 

the choice for having both the research and testbed independent from any specific game 

engine technology has limited the potential of the testbed in a real production 

environment. As stated in the Chapter 3, tools used in iterative design need tight 

integration with the complete production tool chain to reduce overheads as much as 

possible. Even though the testbed contains quite powerful features and could currently be 

used in a tool chain by importing and exporting heightfields, the process of importing and 

exporting from/to other applications will cause a significant overhead. For example, 

exporting a large heightfield to a file from the testbed can take a few seconds. However, 

some engines then would take between a few seconds and a few minutes to import the 

heightfield file. It would then be very inefficient to export the heightfield from some game 

engine editor, import it into the testbed, make some minor modification, export it and 

import it into the game engine editor again. To improve this situation, the 

communication needs to be faster and/or the number of switches between different 

applications needs to decrease. An example of the first would be to develop a thick 
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client/thin server system. The game engine-specific thin server would then serve to offer 

direct memory access to (only) the heightfield area that needs to be edited. The testbed 

would be the thick client, capable of communicating with any available engine server. A 

reversed client/server architecture could also work. Then, the actual editing would be 

done in the game engine’s own (client) editor and any actual heightfield operations will be 

delegated to the testbed server. The render and UI code of the testbed server would then 

be made obsolete. A third option would be to integrate the testbed operation code 

completely with an existing game engine editor. Although this would require the most 

(game-specific) code refactoring, it would also allow for the most game-specific 

optimizations.  

 

The second and third option would both have additional benefits over the current 

implementation and the first option. Even though the terrain texturing can be made to 

resemble the texturing in the final game, the results are probably not exactly the same. 

Also, editing terrain without context of other objects in a level (e.g. buildings, trees and a 

water line) adds to the difficulty of using an external terrain(-only) editor. Of course, 

certain objects could be made importable into the terrain editor to add context, but it 

would be much more precise and user-friendly to edit terrain in its full context and thus 

in the game engine’s own editor. The above second and third option do exactly that. Note 

that full integration with a game engine and editor would also imply direct sharing of 

resources. Especially GPU resources (e.g. textures) might be hard to share between a 

complete game engine and the memory greedy GPU terrain operations. More (game 

engine-specific) research would be needed here. 

 

Another difficulty that arose during the development of the testbed was memory 

consumption. Considerable effort has been spent on minimizing memory requirements 

and preventing memory leaks. Still, long editing sessions resulted in depletion of 

available virtual memory, which is limited to 2 GB on Microsoft Windows 32-bit 

platforms. This depletion was caused by the offered unlimited number of undo levels. 

Obviously, limiting the undo depth would result in a quick fix but might hinder the user. 

A better approach would be to use a 64-bit OS or create a custom virtual memory system, 

capable of virtually addressing a much larger data store, asynchronously and 

transparently swapping data to and from disk. This would even become more important 
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when support for heightfield layers would be offered, as this is expected to increase 

memory consumption considerably. 

 

Even though development of the GPU pipeline was cumbersome, the resulting fast 

evaluation of complex procedural brushes allowed results to be viewed almost instantly 

even for large brushes once this pipeline was in place, which is a considerable 

improvement over current typical editor applications. This did not only assist in the rapid 

creation of complex terrain by users, it also helped in the design of new procedural 

variations as the results could be inspected and adjusted in little time. This was further 

aided by the implemented capability to reload and recompile an operation pixel shader at 

run-time. Hence, a text editor could be used to experiment with shader code, which could 

be used instantly in a running editor. This feedback was most valuable for algorithms 

that are ‘tweaked’ for visual quality instead of mathematical correctness. 
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10 Conclusions 

The previous chapter discussed the experimental results and practical considerations. 

This chapter covers interesting fields for future research, followed by the dissertation’s 

concluding remarks, summarizing all discussed topics and findings. 

10.1 Future work 

A number of areas for future work might extend the capabilities of the suggested and 

implemented techniques. Some of these have already been mentioned in Chapter 9. Most 

notably, the workflow of the terrain editing process itself is improved by the techniques 

proposed in this report and the testbed. However, terrain editing is only one aspect of 

level design in a production pipeline. As the testbed editor is currently a stand-alone tool, 

it could be improved by better integrating this editor with the other tools in the pipeline. 

Different client/server and full integration approaches could be implemented, each with 

different tradeoffs between execution speed, conversion speed, rendered context and the 

reusability between game projects. In contrast to the work presented in this dissertation, 

integration would require exact knowledge of and dependencies on the specific tools and 

game engine used, including their implementation details. 

 

A number of brushes have been developed using the fast GPU editing pipeline. The 

results obtained with these brushes have proven the viability and the potential of this 

approach. An interesting area of future work would be the development of efficient 

parallel implementations of additional common and novel brush types to even better 

support the user. Of course, other suggested techniques like the layers and blending 

techniques could be developed using this pipeline as well. A last interesting area of future 

work is the development of a set of tools to improve the typically ill-supported creation of 

unnatural but realistic, man-made terrain features like canals and roads. 

10.2 Concluding remarks 

The creation of large outdoor terrains, or more specifically heightfields, that are 

simultaneously functional and realistic for use in computer game levels is currently 
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hindered by the lack of applications able to rapidly create realistic but controllable 

features. To this end, many suggestions, recommendations, ideas and experimental 

results have been compiled in this dissertation. 

 

Firstly, analysis of the iterative design paradigm, as embodied in many creative 

design tasks including level design, has led to the recognition of the need for 

simultaneously more controllable and powerful tools than is offered by currently 

available applications. Suggested improvements include support for a toolset of powerful 

but controllable procedural brushes, blendable layers, a powerful undo system, friendlier 

user interfaces, presets to accommodate for various levels of expertise, and continuity and 

reduction of the edit-and-evaluate cycle time. Some of these suggestions are inspired by 

techniques found in image editing applications like Adobe Photoshop. These techniques 

would be fairly easy to translate to the domain of heightfields, as both images and 

heightfields are essentially matrices of values. Moreover, such features will be instantly 

recognized by users, shortening the learning curve. 

 

Secondly, techniques to render terrain in real-time have been surveyed. Not only do 

terrain render algorithms have a direct impact on the frame rate during viewing, they 

also differ in the time required to present updates to any edited area. Hence, different 

render algorithms have been discussed, of which one has been optimized in several ways 

to further improve render and update speed. A texturing method has been discussed that 

efficiently hides texture stretching on more sloped terrain features. Although this method 

has not been previously found in literature, it is probably similar to what is offered by 

some of the best modern game engines. A customizable layered texture splatting 

technique has been created and described that allows for complex texturing effects, 

capable of approaching results presented by most modern game engines.  

 

Thirdly, editing algorithms and techniques found in literature and in practice, which 

would potentially be useful as tools in a level editor, have been described in detail, 

including their merits and disadvantages. These algorithms have been classified into 

three categories: low-level brush editing, global (erosive) simulations and global 

parameterized procedural synthesis. Each of these has its advantages and disadvantages 

in terms of realism, flexibility and required processing time. Low-level tools work best 

when precise control is required. High-level simulation and synthesis tools attempt to 
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create realistic terrain while requiring little effort from the user.  This, however, limits 

the usefulness to a user when more precise control over the created features is required. 

Also, the complexity of the global algorithms often leads to poor performance. To offer the 

user a level of control that lies between low-level simplistic but precise tools and high-

level global simulation and synthesis techniques, a brush-based procedural approach is 

suggested. In practice, this also has the advantage of typically limiting the affected area 

of complex operations to a relatively small area, decreasing the required processing time. 

Even so, applying complex brushes at interactive rates proved challenging. 

  

Fourthly, as typical heightfield operations were found to consist of applying the same 

algorithm to large amounts of data elements, it made sense to investigate ways of 

exploiting the parallelism offered in modern PCs to improve editing at interactive or even 

real-time rates. Instead of focusing on multi-core CPUs, a specialized pipeline was 

developed for the typically even more powerful graphics processor, or GPU, found in 

modern PCs, to execute terrain modification algorithms with. Exploiting the highly 

parallel GPU for purposes other than rendering is a relatively new approach, only made 

possibly by recent advancements in its programmability. The developed pipeline was 

then used to improve the performance of several brushes, offering a number of low-level 

and procedural techniques. To get the most out of the available hardware, a number of 

optimizations have been applied, including minimization of the number and size of the 

areas updated by complex operations, and combining the effect of multiple brush 

operation instances together in a single render call. 

 

Lastly, valuable progress has been made in improving procedural techniques. Even 

though commonly used techniques do not create repetitious terrain, they do often tend to 

synthesize features that look too similar to each other to be considered very realistic. Two 

novel variations have been described that improve this situation. First, an algorithm has 

been derived that excels in creating eroded mountainous terrain with statistically 

different features in the created valleys, tops and slopes. Secondly, a more user-controlled 

variation has been described that is specifically designed to be used as a brush. This 

variation creates features that are more dependent on the actual user brush strokes and 

can therefore create more natural variation. 
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Summarizing, the research results described in this dissertations represent a 

considerable step towards simultaneously improving quality, speed and control of the 

tools offered to game level designers. Discussed techniques for this include currently 

available tools, ideas from other disciplines and novel algorithms. Experiments showed 

that even complex algorithms can be offered as interactive tools on today’s hardware 

when parallelism is exploited. Therefore, achieving the ultimate goal of integrating these 

techniques within one single application can justly be expected to bring about 

improvement of the iterative workflow, enhancement of user control and simplification of 

the creation of realistic terrain features.  
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Appendix A. UML class diagram testbed 

UML class overview diagram of the implemented testbed. See Appendix B for details 

on the classes that are related to GPU processing. 
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Appendix B. UML class diagram GPU editing 

UML class overview diagram of classes related to GPU editing. The inheritance tree is 

specific for the noise brush ‘HeightfieldOperationGPUNoise’ and could be different for 

other brushes.  
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Appendix C. Testbed editor screenshots 

 
Example of procedural synthesis result in testbed editor. The terrain outside the red brush area was created completely 

procedurally on the GPU by a custom experimental shader program that performs several noise evaluations and performs 
various range and domain warps 

 

 

 
Example of terrain made by user-controlled brush strokes in testbed editor. Applied brushes include a simple push/pull 

brush, a turbulence brush and an erosion simulation brush 


