
Interactive GPU-based procedural heightfield brushes
Giliam J.P. de Carpentier

W! Games
Damrak 20

1012 LH Amsterdam
The Netherlands

giliam@decarpentier.nl

Rafael Bidarra
Delft University of Technology

Mekelweg 4
2628 CD Delft

The Netherlands

r.bidarra@ewi.tudelft.nl

ABSTRACT
Virtual outdoor terrain used for games is generally created by a
level designer, using a variety of tools. These tools are currently
based either on local interactive brush-based terrain sculpting or
on global, parameterized algorithmic synthesis/adaptation of
complete heightfields. Both tool types have largely
complementary benefits and drawbacks. In this paper, we present
procedural brushes, which combine the strengths of both tool
types, offering a seamless transition from local control to fully
automated generation, depending on the brush size. To optimize
the execution speed of the computationally-intensive procedural
algorithms, we propose to use the huge processing power of
today’s graphics hardware. For this, the procedural algorithms
have been translated to shaders, and used as part of a pipeline to
render changes on a heightfield in video memory. We present a
GPU brush editing pipeline for graphics hardware supporting
Shader Model 3.0, coping with hardware restrictions regarding
blend modes, precision and texture size. Several implemented
procedural algorithms are described as well, two of which are
novel. Experiments showed that the implemented system resulted
in a speedup of roughly one order of magnitude over a reference
CPU pipeline implementation. This made it possible for users to
apply both trivial and complex procedural brushes at interactive
rates, thus leading to a more efficient creation of complex virtual
worlds.

Categories and Subject Descriptors
I.3.3 [Computer Graphics]: Hardware Architecture – Graphics
processors; I.3.4 [Computer Graphics]: Graphics Utilities –
Paint systems; I.3.6 [Computer Graphics]: Methodology and
Techniques – Interaction techniques; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism – Fractals

Keywords
terrain modeling, procedural synthesis, heightfields, GPGPU,
shader programming, graphics hardware

1. INTRODUCTION
User expectation and technological sophistication of computer
games is increasing with every new generation of consoles. To
create more detailed and realistic virtual worlds for the latest
hardware, the content creation pipeline should get more powerful
as well. This demands tools that improve efficiency and
productivity of game level designers. With this motivation, we
aimed at improving the tools available for heightfield creation by
investigating novel combinations, variations and applications of
related tools and techniques.

A heightfield, heightmap or (digital) elevation map is an ordered
dataset that defines an elevation sample for each point on some
planar regular grid, displacing these points perpendicularly to the
plane. In the context of terrain, the grid is typically assumed
horizontal and, consequently, the displacement is strictly vertical.
Even though this representation disallows any overhangs and
caves, it is still used in many games because of its compact
representation and the availability of optimized rendering
algorithms (e.g. [1], [2] and [4]). Heightfield data can both be
scanned from real-world areas or created from scratch for
fictional worlds. To create new heightfields, several tools are
currently available. These tools can roughly be divided into two
categories, which are described next.

Firstly, there are tools that allow the user to ‘brush’ over the
terrain using input strokes of a mouse or tablet. These strokes are
then used to interactively apply brush operations in the brushed
areas. Because the operations are kept relatively crude and
mathematically simple, they can be applied at interactive rates.
Brushes offer level designers maximum control to create hills,
valleys and plains but require much time and expertise to create
detailed and realistic terrains with. Typical operations include
terrain raising, lowering and leveling, and common brush
parameters include brush radius and effect scale.

© ACM, 2009. This is the author's version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings of the 4th International
Conference on Foundations of Digital Games, Pages 55-62,
http://doi.acm.org/10.1145/1536513.1536532

Secondly, there are tools that can output realistic heightfield using
specialized algorithms. Two algorithmic classes can be
distinguished here: simulation and procedural synthesis.
Simulation algorithms globally transform terrain by directly
imitating a geological process. These algorithms are typically
only (over-)simplifications of the complex and sometimes poorly
understood natural processes. Still, with some experimentation,
impressive results can be achieved [11]. However, the vast
amount of data and the considerable number of required iterations
makes running these simulations very slow. Due to this fact, they
will not be considered for this paper. In contrast to simulation
algorithms, procedural synthesis algorithms do not try to simulate
natural processes directly, but rather approximate the fractal-like
semi-random patterns empirically found in the results of these
processes (e.g. smooth hills or rough mountains). By a process of
data amplification using a number of user-set parameters, some
procedural multi-resolution synthesis scheme and a pseudo-
random noise generator, large terrains can be synthesized with
minimum effort from the user. Because procedural synthesis
algorithms do not require multiple iterations to be evaluated, they
are many times faster than simulations. Still, they are typically
too slow to be executed for large terrains at interactive rates.

Procedural synthesis tools also have another disadvantage. As
long as the user is satisfied with the limited level of control
offered by these tools, their benefit over interactive brushes is
obvious. However, when the user desires more precise control
over the location of specific terrain features (e.g. mountains,
plains and valleys), the parameters offered are too limited, as
these are used globally (i.e. everywhere on the heightfield). This
can render these tools of limited use. Furthermore, they most
often only excel in the creation of one type of natural terrain. The
creation of a wide range of terrain types could be achieved by
either offering a large set of different complex algorithmic tools,
or supporting a setup of applying a smaller set of simpler
algorithmic tools as building blocks in a cascading node-based
tool graph that can be designed by the user. One might even use
such a graph to mask different areas of the output of different
nodes and compose the masked outputs to create more spatially
varying and controllable results. From the user’s perspective, the
latter would be more flexible and customizable to his specific
needs, but would also require a more thorough understanding of
these nodes, as well as proficiency with the more mathematical
treatment of operations when setting up a useful tool graph.

In this paper, we propose the application of procedural synthesis
tools as brushes, which we believe is both more natural and more
intuitive to the user. As a result, the user is able to seamlessly
select the right amount of local control and automation by simply
varying the brush size, as small brushes provide more control,
enabling the user to do most of the sculpting, while large brushes
allow large features to be generated algorithmically. As brushing
requires interactive feedback to be effective, any implementation
of such a system must be fast enough to execute the required
algorithms at interactive rates. Interactive feedback rates are most
needed when maximum user control is desired and, thus, smaller
brushes are used. Fortunately, these small brushes are inherently
also fastest to evaluate. Still, complex algorithms require large
amounts of computational power, especially when the brushes
apply procedural algorithms. To this end, we propose utilizing the
processing power of today’s graphics cards to accelerate the
evaluation of these algorithms.

Executing algorithms not directly related to rendering on the GPU
is a relatively new approach, which is largely made possible by
the increasing programmability of this hardware. The combined
processing power of the large number of highly parallel
processing units easily surpasses the processing power of the
CPU, as long as an algorithm and its data structures can be
mapped efficiently [13]. For several applications, including many
physics simulations, there have been reported speedups of roughly
one order of magnitude when implemented on the GPU [12].

Due to restrictions on the length of this paper, not all algorithmic
details could be given here. For additional details, the reader is
referred to the thesis on which this paper is largely based [3].

The remainder of the paper is organized as follows: Section 2
briefly surveys previous work from a number of different fields.
Section 3 discusses different components needed in a basic brush
system. Section 4 describes the GPU-based brush pipeline and
Section 5 presents both common procedural terrain algorithms
and two novel algorithms for the proposed GPU pipeline. Section
6 covers results obtained by experimental evaluation of our
implementation of this system within a terrain editor. Finally,
Section 7 concludes the paper.

2. PREVIOUS WORK
The concept of virtual brushes is well known from many image
editing applications. There, the user is able to ‘paint’ with highly-
customizable tools like pencils, erasers and clone stamps.
Combined with functionality such as multiple undo, layers and
masks, it forms a powerful, yet intuitive concept to create and edit
images with. Several terrain editing applications have adopted the
concept of brushes. However, these implementations generally
only support the most basic operations. Furthermore, results are
often found dependent on frame rate, which itself is dependent on
brush size.

In addition to tools that enable users to brush terrain themselves, a
different set of tools can synthesize a whole terrain
algorithmically. Mandelbrot was the first to observe the similarity
between a trace of the one dimensional fractional Brownian
motion over time and the contours of mountain peaks [9].. This
idea was later generalized to fractional Brownian motion fractal
surfaces with a ƒ-β power spectrum. Many fractal synthesis
algorithms have been devised over the years that directly or
indirectly approximate this power spectrum. Examples are
midpoint displacement [6], Poisson faulting [8] and Fourier
synthesis [16], all with different advantages and disadvantages.
This paper focuses on noise synthesis [10], as it is flexible, it is
known to produce few artifacts and is suited to be run on parallel
hardware, including graphics hardware.

Noise synthesis approximates the desired power spectrum by
calculating the weighted sum of several different band-limited
noise functions. An often used function that produces well-
behaved band-limited noise is the Perlin noise function [14]. As
Perlin noise is a well-known and generally useful feature in
procedural imagery, different implementations of the function as a
GPU pixel shader or a vertex shader have already been developed
for different shader versions. Our work is based on the pixel
shader by Green [7], but is optimized to efficiently calculate a
noise scalar as a function of a continuous 2D position and a
discrete seed number. A number of extensions to Perlin-based

noise summing are found in literature and in many applications,
all transforming inputs and outputs differently to get different
shapes, including ridged and billowy noise. A more complex
variation is described by Quilez [15]. All these variations can be
efficiently implemented on the GPU as procedural brushes,
offering the user a wide set of terrain types to choose from.

3. BRUSH SYSTEM
This section describes a basic brush system, which will be
extended and mapped to the GPU in subsequent sections. The
brush system lets the user apply a brush tool along an arbitrary
brush stroke. It is assumed that a brush tool can be positioned and
activated on a heightfield using an input device like a mouse or
tablet, and is circular in shape. The effect of the brush on the
terrain must be calculated and visualized at interactive rates.
Assuming the user can view the terrain in 3D from an arbitrary
angle, the mouse or tablet pointer must be projected onto the 3D
terrain. These 3D positions are then transformed into the local 3D
heightfield space. As the brush is circular, it must also have a
radius parameter. Although it might be possible to analytically
calculate the effect of a brush along a complete or piece-wise
brush stroke, we chose the more flexible approach of sequentially
applying individual brush instances along the stroke. Together,
the individually applied instances approximate a would-be
continuous application of the brush. The distance between the
center positions of the instances should always be (much) smaller
than the brush radius; see Figure 1. The optimal distance is a
tradeoff between performance and quality, both depending on the
actual brush instance implementation, and possibly the user’s
preference. As a specific brush type might have additional
parameters influencing performance or shape, the combination of
a brush-specific heuristic and a user-controlled scale is best used.
To get the positions for the individual instances, we use the local
input positions of the stroke to create a spline, which is then
sampled at the desired spatial intervals. This prevents the result
from being frame-rate dependent.

The individual brush instances will apply the brush algorithm,
which can take a noticeable amount of time for complex
procedural algorithms and/or a large brush radius. These instances
are best applied in parallel with other tasks like rendering, or at
least be executed asynchronously. For this, an instance FIFO
work queue can be used, adding new instances when they become
available, and processing as much instances as possible per frame
without affecting the other tasks too much, thus keeping the frame
rate at a workable level at all times. Note that using a queue can
result in the brush effect lagging behind the user’s input.
However, this is still preferable to low and irregular frame rates.

We can assume the whole heightfield is represented as one 2D
data array containing the individual elevation levels. Each
element in this array represents a local height value H(u,v),
normalized between 0 and 1. As 8-bit heightfield elements
typically would results in banding artifacts, either 16-bit integers
or 32-bit floating point numbers are used in practice.

When a brush instance i is applied, the circular area in H at center
position ci and radius ri. is affected. Individual brush types might
use additional parameters defining the shape and scale of the
brush effect inside this circular area. These parameters are used as
input to the brush algorithm, which will update the rectangular
area [ci,x - ri, ci,y - ri] - [ci,x + ri, ci,y + ri] of H. For example, an

algorithm used for a simple ‘terrain-raising’ brush will read the
local old height value, add a small value to this, and output it.
Consequently, the output height value ht for heightfield element t
at UV position pt can be defined as

ht = H(pt) + s·o·fi·m·b, (1)

where s is some constant based on the heightfield’s internal data
format and dynamic height range, o is the user-controllable
strength of the brush, fi is the pressure of user’s stylus tip at
instance i, and m is a brush-specific multiplier. For the terrain-
raising brush, a fixed m = 1 is used. We define b as

b = 1 – min((pt – ci) ● (pt – ci) / ri
2, 1), (2)

This calculates a scale factor based on the squared distance
between position pt and instance center ci. This squared distance
will cause the brush instance to exhibit a parabolic fall-off effect,
adding s·o·fi·m to H(pt) in Eq. (1) for an element that lies precisely
at ci and simply returning H(pt) for all elements t that lie outside
the instance’s circular area (i.e. for ||pt – ci|| ≥ ri). If desired, Eq.
(2) can easily be extended to incorporate additional parameters
like an inner radius and a shape of a fall-off ramp towards the
(outer) radius ri.

After any instances have been applied successfully to the
heightfield, the renderer must be notified to use the updated data.
Depending on the used rendering algorithm, the rendered
geometry might need to be updated as well, as the algorithm
might not render the heightfield directly, but instead use geometry
buffers derived from the heightfield. Obviously, rendering
algorithms that require little or no heightfield preprocessing are
better suited for terrain editing. The heightfield rendering
algorithm we chose for this paper was Geomipmapping [2]. This
level-of-detail, tile-based rendering algorithm can easily be
extended and optimized to share and reuse vertex and index
buffers. Also, all terrain lighting and texturing was done in real-
time, thus avoiding expensive preprocessing.

4. GPU PIPELINE
To accommodate GPU-accelerated brush calculations, the effect
of a brush instance must be represented as some rendering
operation. Furthermore, the heightfield must be present in video
memory, represented as one or more textures. For the moment, we
will assume the whole heightfield is stored as one single-channel
texture, representing H(u,v). Note that when this texture is
interpreted as a greyscale image, the minimum and maximum
height values are represented by black and white, respectively.

Figure 1. Approximating a circular brush stroke with a low
(left) and high (right) brush instance density.

The bit depth of the heightfield texture must be at least as large as
the bit depth of the original data. This means that it might be
necessary to use a 16-bit integer or 32-bit float texture format.
Note that 16-bit float texture formats would typically be too
coarse and would result in visual banding artifacts. Alternatively,
a bit packing technique can be used, representing 16-bit integer
values as multiple components of a lower bit depth.

A simple and efficient way of implementing a terrain-raising
brush based on Eq. (1) would be to use the latest H texture as a
render target and render a (small) quad on top of it for brush
instance i using the additive blend mode. The center of this quad
needs to be at ci, and it should be just large enough to apply a
texture of a non-black circle of radius ri on a black background.
This rendering operation would whiten, and thus raise, the area of
H covered by the circular brush instance i. However, this method
is not very flexible, as differences in brush types would be limited
to applying different textures and using the supported render
blend modes. Furthermore, (additive) blending of 16-bit or 32-bit
textures might not even be supported on all hardware. Therefore,
a more flexible, better supported alternative scheme was chosen
instead, even though it is more complex to set up and optimize for
performance.

To accommodate read-backs and custom processing of values in
H in order to calculate the output of more complex brush types, a
brush instance algorithm must be implemented as a pixel shader
which will have access to H. This pixel shader will then be used
to render an updated version of H. In contrast to the previous
scheme, the output ‘pixel color’ does not have to be blended in
additively, but will simply replace the old values in H. But as a
texture cannot be read from and written to from within the same
render call, we chose to use a ‘ping pong’ rendering scheme. This
requires the use of a second (render target) texture of the same
dimensions as the original H. For the application of the first (and
possibly only) brush instance in the queue, this second texture is
used to render to. When the render call has been completed, the
render target texture will contain all values of the updated H.
Assuming the original H texture can be used as a render target as
well, the roles of the two textures can now be swapped, allowing
the next brush instance to be applied by rendering to the original
texture again, and so forth.

Each render call, applying the effect of a single brush instance,
should at least bind the brush algorithm similar to Eq. (1) in the
form of a pixel shader, the ‘input’ heightfield texture, the ‘output’
heightfield render target texture, and the brush instance position ci
and radius ri. Of course, any brush-specific parameters might be
set as well as one or more shader constants or supplementary
input textures. The render call will render a quad using this pixel
shader that will cover (at least) the area affected by the brush
instance. When the output texture is not (known to be) identical to
the input texture in areas other than the affected area because it
might just have been allocated, or it does not contain the latest
updates, the values from the input texture (the previous version of
H) must be copied to the output texture (the updated version of H)
as well. This is easily accomplished using a trivial ‘copy’ pixel
shader that is applied to quads covering these outdated areas but
not covering the area affected by the brush instance.

The ping pong rendering scheme requires many memory
read/write operations. This can easily cause the memory
bandwidth to become the main performance bottleneck. This

overhead can be minimized by combining the calculations for
multiple brush instances inside the pixel shader, combining
separate results in order, and outputting the combined result as
one pixel value. One good overall technique we found (for the
used hardware and implemented brush types) was to always feed
the pixel shader the oldest 16 instances. If the queue size was less
than 16, some of these 16 slots were disabled (i.e. o = 0 in Eq.
(1)). Other techniques like in-shader dynamic branching, and
automatic compilation and static selection of a shader with the
best capacity have been tried as well, but these did not perform
significantly better, and did not justify the required increased
complexity. Note that instance batching can only be implemented
efficiently for algorithms that calculate a new height ht based
solely on pt, (e.g. most procedural techniques) but no other
elements in H (e.g. a multi-tap filter). Otherwise, the
interdependencies between inputs and outputs among these
elements require either sharing or recalculation of the results for
the intermediate instances in a batch.

This assumption also makes it possible to easily partition the
heightfield H into smaller textures with minimal changes to the
editing pipeline and pixel shaders. Partitioning a heightfield into a
number of smaller fixed-sized textures has several advantages,
especially for relatively large heightfields. For one, the maximally
supported heightfield size is no longer dependent on the
maximum texture size supported by graphics hardware. Also, it is
no longer required to keep the complete heightfield in video
memory, but only the smaller textures that are immediately
required for editing, reducing the minimum footprint in video
memory. Furthermore, smaller textures are generally faster to
read from when rendering, thus improving performance. And
lastly, when multiple versions need to be kept in memory to make
it possible to undo the latest operations, all textures that have not
been updated by these operations can be shared between versions,
potentially saving a lot of (main) memory without implementing
more complex and expensive compression techniques. Note that
when a brush instance affects multiple textures, it must update
each of these textures as a separate render operation, which is
easily implemented by adding these updates as separate tasks in
the instance work queue, each one affecting only one texture. This
also has the advantage of reducing the granularity of these queued
tasks, allowing for better load balancing between any per-frame
editing operations and other GPU tasks.

5. GPU BRUSH VARIATIONS
The terrain-raising brush discussed in Section 3 assumes m in Eq.
(1) to be 1. Alternatively, when m = –1 is used, the effect is
reversed, resulting in a ‘terrain-lowering’ brush. By replacing m
with some function of the available parameters, many different
brush types can be represented. For example, when a brush is
created with

m = B(Ti · [pt,x , pt,y , 1]T), (3)

with B being some user-controllable texture and Ti being a 2 x 3
rotate/scale/translate transformation matrix, a transformed version
of B will be added to H within the area the user applies the brush
to. B could be a complete heightfield or some interesting tiling
pattern. Ti can be defined per instance i if desired, which could,
for example, be used to minimize repetition of any obvious
patterns in B.

Instead of B being defined by a 2D texture stored in video
memory, it can also be defined implicitly by an algorithmic
function of 2D space. As B might be sampled at any position in its
domain, recursive and iterative algorithms are less suited for this
purpose. A flexible and fast candidate is noise summing, based on
the Perlin noise function. Perlin noise divides the domain into an
integer lattice. The integer points are procedurally assigned a
gradient by hashing the integer position using simple permutation
and gradient look-up tables. The noise result of any input position
is evaluated by calculating and interpolating the gradients of the
nearest integer lattice points. For our purposes, the noise is
assumed to be evaluated at some 2D position with a given seed
number for variation, requiring a 3D Perlin noise function. But
because we chose to support only integer seed numbers, we were
able to simplify the original noise algorithm, requiring only the
evaluation and blending of four points on the 3D integer gradient
lattice, instead of eight. After all required hashing and gradient
lookup tables were combined into two 2D 8-bit RGBA textures,
the final Cg pixel shader noise function needed only three texture
lookups and a minimum of logic. See [3] for more details.

5.1 Basic Noise Summing Brush
Noise summing requires the calculation of different noise bands.
Each of these bands, or octaves, can be written as a Perlin noise
function call with a differently scaled input position and output
weight. The final weighted summing of the noise outputs
effectively composes the separate pieces of the power spectrum
together. The basic noise summing algorithm can be defined as
follows:

1

0

() (,)




  p p
n

j j
j

j

B w N e . (4)

Here, N(p, e) is the Perlin noise function, consistently returning
the same scalar value for the same input consisting of 2D input
position p and seed number e. Its output is assumed to lie in the
range [-1, 1]. λ is called the lacunarity and represents the ratio
between the mean frequency of subsequent noise bands j and j+1.
For the best results, it is typically kept near, but not exactly at 2.0.
w must lie in the range (0, 1) and is used to control the terrain
roughness. See [10] for more details. The number of noise bands

n directly affects the amount of detail levels and the time required
to calculate B(p), and is typically kept between 5 and 10,
depending on the heightfield size and the desired quality. Note
that Ti in Eq. (3) can be used to directly influence the scale of all
created terrain features, and is typically best kept unchanged
while applying a noise summing brush.

5.2 Basic Warping
The basic noise summing algorithm defined in Eq. (4) will result
in basic procedural terrain shapes; see Figure 2. Even though
changing the parameters will result in either rougher of smoother
terrain, it cannot be used to generate many different terrain types
with. However, it can easily be adapted to more complex forms
by transforming different parts of Eq. (4) by (non-linear)
functions:

1

0

() ((((),)))




  p p
n

j j
post in pre j

j

B T w T N T e . (5)

Any parameters for the Tpre, Tin and Tpost transformation functions
can be made available to the user of the system, allowing the user
to experiment with these parameters. Many different
combinations of transforms can be used. For example, when Tpost
(h) = ha with a > 1, peaks and valleys are made steeper, while
areas in between are flattened; see Figure 3. The well-known
‘ridged’ noise (Figure 4) and ‘billowy’ noise (Figure 5) can be
created with

Tin (h) = 1 – abs(h), and (6)

Tin (h) = abs(h), respectively. (7)

The Tpre function can be used to warp the input of N. For example,

Tpre(p) = p + [αN(βp, e1), αN(βp, e2)]
T (8)

will result in more swirly shapes, locally compressing, rotating
and elongating features. Here, α and β are non-zero scale factors,
and e1 and e2 are seed numbers that are independent of ei. For
even more complexly swirling landscapes, the noise function N in

Figure 2. Basic noise summing

Figure 3. Range warping

Figure 4. Ridged noise

Figure 5. Billowy noise

Eq. (8) can be replaced by B from Eq. (5). Compare Figure 6 and
Figure 7.

The techniques discussed above can create very detailed
landscapes, but typically lack spatial variation of the terrain
properties found in nature. For example, both valleys and peaks
are generated equally rough. Of course, when these are applied as
brushes, the user can both control the affected area and change
brush settings at will, resulting in more natural landscapes when
used well. Nonetheless, offering brushes that create more varied
terrain algorithmically can be beneficial to the user. (Hybrid)
multi-fractal [5] algorithms are examples of procedural techniques
that offer a height-dependent roughness. However, results seem
somewhat mathematical or ‘synthesized’. A noise variation
described in an article by Quilez [15] generates a richly varied
landscape by defining a Tpre function for each band that scales the
noise based on the spatial derivatives of N for all coarser bands;
see Figure 6. Although the article claims to use a gradient lattice
Perlin noise function and its derivative, it uses a simpler value
lattice noise generator instead. Nonetheless, the algorithm
generates complexly varying amounts of local detail, resulting in
more natural landscapes. As the algorithm can be written as a
variation of Eq. (5), it can simply be implemented as pixel shader
code as well.

5.3 Directional Noise
Another application of Ti from Eq. (3) is to use it as a per-instance
transformation matrix to compress the input at an angle to the
local direction of the brush stroke. This can be combined with all
above techniques. The additional influence gives the user a range
of new possibilities. For example, when such a brush is set up to
compress the input perpendicularly to the brush stroke which is
then used to brush along a mountain ridge, features will appear
that resemble small gullies, carved out by down-hill streams. Note
that compression of the input to N results in larger features.
Compression in other directions relative to the local stroke
direction can be achieved in a similar fashion but can be used in
different ways. For example, when the compression is in the
direction of the local stroke direction and is applied along a
mountain ridge, the mountain face will get terrace-like features.
When it is applied as a wavy brush stroke from top to bottom on a
smooth area of a mountain, naturally flowing gullies will appear.
See Figure 8 for an example of the different effects.

5.4 Erosive Noise
Instead of letting the user apply the above brush near existing
mountain ridges, the above idea could also be applied when
brushing new mountain ranges. So instead of adding features
compressed along the brush stroke on top of an existing mountain

range, new mountains are distorted with these features while
being created. Note that defining such a function is probably as
much an art as it is a science. Hence, the algorithm described next
is only one of many possible approaches. As the 2D derivatives of
B(p) roughly point towards the ridge nearest to p, they indicate
the direction of the up/down-hill feature elongation. In order to
compress the coordinates on a slope, p is ‘pushed’ towards the
ridge top, in the direction of the gradient. In effect, the features on
a slope will become elongated, while the features near the top will
become compressed; see Figure 9. To get ridged mountains, the
algorithm is based on ridged noise (i.e. Eq. (6)), now called R(h).
Note that R(h) is a function of N(x, y), assuming Eq. (5) is still
used. The gradient of R(h) has an inconvenient discontinuity in its
spatial derivatives at h = N(x, y) = 0 due to the abs in its
definition. To overcome this, the gradient G(x, y) of R(N(x, y)) is
approximated by

(,) (,)
(,) , (,)

 
 

 
  
 

T
N x y N x y

N x y N x y
x y

. (9)

This approximation effectively scales the derivatives to 0 at the
discontinuity. The derivatives of the Perlin noise function N(x, y)
are calculated analytically. As B(p) from Eq. (5) is calculated
band by band, so is the gradient that is used to displace the p for
the next band of B(p). The exact algorithm is described in pseudo
code:

function calcErosiveNoiseAt(px, py)

 {

 freq = 1; amp = 1; B = 0;

 dx = 0; dy = 0; s = 1;

 for (j = 0; j < n; j++)

 {

 Tpre,x = freq*(px + dx);

 Tpre,y = freq*(py + dy);

 Tin = s*(1 – abs(N(Tpre,x , Tpre,y)));

 B = B + amp*Tin;

 dx = dx + amp*(α*s*Gx(Tpre,x , Tpre,y));

 dy = dy + amp*(α*s*Gy(Tpre,x , Tpre,y));

 s = s*min(1, max(0, β*B));

 amp = amp*w;

 freq = freq*λ;

 }

 return B;

}

Figure 6. Quilez noise

Figure 7. Distorted Quilez noise

The first four and last two lines in the for loop implement Eq.
(5) for some Tpre and Tin. Logically, the gradient G(x, y) is
sampled at the same position as N. (dx, dy) accumulates a scaled G
in a similar fashion to noise summing (see Eq. (4)) and displaces
(px, py) to elongate features on a slope. s is an additional scale
factor that scales down the amplitude of both N(x, y) and G(x, y)
for finer bands at lower (intermediate) altitudes, causing the
landscape to be relatively smooth near valleys. Because the effect
of carved out gullies and smooth valleys approximates the effect
of fluvial erosion, we named this algorithm erosive noise. The
constants α and β control the amount of feature displacement and
the amount of roughness near valleys, respectively. For Figure 9
and Figure 10, we used α = 0.15 and β = 1.1. The above algorithm
will create fairly straight gullies. However, the output, including
the gullies, can easily be made more swirly by first warping the
input (px, py) using Eq. (8). See Figure 10 for a comparison.

6. RESULTS
The proposed combination of procedural algorithms and brushes
used on heightfields is both useful and powerful because its
operation is executed fast enough to produce interactive brush
feedback. Experiments showed that these rates were hard to
achieve using CPU brush implementations. As the theoretical raw
computing power of the GPU surpasses that of the CPU, the
performance of a brush algorithm will increase when it is
executed on the GPU instead of on the CPU, provided that it can
be mapped efficiently to supported render concepts. The
developed GPU pipeline easily outperformed reference CPU
implementations, even though it introduced an additional I/O
overhead. For example, a reference CPU implementation for the
relatively simple terrain-raising brush from Section 3 executed at
10 fps when using a brush diameter of 500 heightfield elements,
while a GPU implementation of this brush executed at 60 fps

under identical circumstances. This was tested on an Intel T7200 /
NVIDIA GeForce Go 7950 GTX machine. The overhead in the
GPU pipeline is largely independent of the used brush algorithm.
Consequently, more complex and computationally intensive
brushes use the GPU computing power relatively more efficiently,
thus further increasing the relative speedup. Furthermore, a larger
brush radius will increase efficiency as well. Therefore, the user
will benefit the most from the GPU pipeline for the more complex
and larger, and thus slower, brushes. Overall, the performance of
the GPU brush implementations reached speedups of up to one
order of magnitude for large, complex procedural brushes.

Our fast and flexible procedural brush pipeline supports both fine
editing control and effortless creation of complex procedural
areas, simply by changing the brush radius and other intuitive
settings. The offered toolset of the discussed brushes, including
the novel directional and erosive noise algorithm brush, lets the
level designer choose between terrain types and operations,
supporting efficient creation of effects that would be difficult to
achieve by other means. However, the discussed GPU brush types
are only a few possibilities of what can be achieved with the
discussed pipeline, as many more (variations on) procedural CPU
algorithms found in literature and applications could be mapped
to GPU brushes using similar techniques, further expanding the
toolset offered to the user.

7. CONCLUSIONS
Current demands in the computer games industry include creating
increasingly detailed and realistic virtual worlds. This in turn can
only be achieved by providing game level designers with a new
generation of tools that efficiently boost the productivity of their
creative design tasks, among which terrain creation plays a central
role. Currently available terrain synthesis and editing applications

Figure 9. Ridged noise (left half) and erosive noise (right half).

Figure 8. Directional ridged noise. Top left: Standard ridged
noise features created by a circular brush stroke. Top right:
Features compressed perpendicular to stroke. Bottom left:
Features compressed in the direction of the stroke. Bottom

right: Features compressed at an angle of 45°.

Figure 10. Erosive noise (left half), erosive noise after input

distortion (right half).

fall short in providing either precise control, realistically complex
output or interactivity. To solve these limitations we have
introduced procedural brushes, which offer a seamless transition
from local control to fully automated terrain generation. Our
approach provides a flexible level of control ranging from that by
low-level simplistic but precise tools, up to that by synthesis
techniques.

Furthermore, two new algorithms have been described that are
complementary to common synthesis algorithms and allow the
user to brush more complex and realistic, typical terrain features.
Firstly, directional noise has been introduced, providing a rather
user-controlled variation that is specifically designed to be used as
a brush. This variation yields features that are more dependent on
the actual user brush strokes. Secondly, an erosive noise
algorithm has been introduced, that excels in interactively
creating eroded mountainous terrain with statistically different
features in the created valleys, tops and slopes.

The proposed pipeline makes use of graphics cards by splitting
brush strokes into separate instances and applying these instances
as hardware-accelerated render operations, using textures to store
the heightfield and pixel shaders to evaluate procedural brush
algorithms. To implement this efficiently under the hardware
restrictions of Shader Model 3.0, the heightfield is stored in
separate page textures and instances are combined into one render
call where possible. Even though this setup is more complex than
a CPU implementation would need to be, the GPU pipeline
accomplished a speedup of up to one order of magnitude for the
more complex procedural brushes.

In short, the results described represent a considerable step
towards simultaneously improving quality, speed and control of
the tools offered to game level designers. Discussed techniques
for this include currently available tools, ideas from other
disciplines and novel algorithms. Experiments showed that even
complex algorithms can be offered as interactive tools on today’s
hardware when parallelism is exploited. Therefore, achieving the
ultimate goal of integrating these techniques within one single
application can justly be expected to bring about significant
improvements of the iterative workflow, a powerful enhancement
of user control, and a considerable simplification in the creation
of realistic terrain features.

REFERENCES
[1] Asirvatham, A., and Hoppe, H. 2005. Terrain Rendering

Using GPU-Based Geometry Clipmaps. In GPU Gems 2. R.
Fernando, Ed., Addison Wesley, pp. 27-45.

[2] de Boer, W. 2000. Fast Terrain Rendering Using
Geometrical MipMapping. http://www.flipcode.com/arch
ives/article_geomipmaps.pdf.

[3] de Carpentier, G.J.P. 2008. Effective GPU-based synthesis
and editing of realistic heightfields. M.Sc. Thesis. Delft
University of Technology, The Netherlands.

[4] Duchaineau, M., Wolinsky, M., Sigeti, D.E., Miller, M.C.,
Aldrich, C. and Mineev-Weinstein, M.B. 1997. ROAMing
Terrain: Real-time Optimally Adapting Meshes. In
Proceedings of the IEEE Visualization '97. Los Alamitos,
CA, USA. IEEE Computer Society Press, pp. 81-88.

[5] Ebert, D.S., Musgrave, F.K., Peachey, D., Perlin, K. and
Worley, S. 2003. Texturing & Modeling: A Procedural
Approach. Third Edition. The Morgan Kaufmann Series in
Computer Graphics, pp. 498-506

[6] Fournier, A., Fussell, D. and Carpenter, L. Jun 1982.
Computer Rendering of Stochastic Models. In
Communications of the ACM, vol. 25, no. 6, pp. 371-384.

[7] Green, S. 2005. Implementing Improved Perlin Noise. In
GPU Gems 2. R. Fernando, Ed., Addison Wesley, pp. 409-
416.

[8] Krten, R. Jul. 2001. Generating Realistic Terrain. In Dr.
Dobb’s Journal: Software Tools for the Professional
Programmer.

[9] Mandelbrot, B.B. 1982. The Fractal Geometry of Nature,
New York, W.H. Freeman and Co.

[10] Musgrave, F.K. 1993. Methods for Realistic Landscape
Imaging. Doctoral Thesis. Yale University.

[11] Musgrave, F.K., Kolb, C.E. and Mace, R.S. 1989. The
synthesis and rendering of eroded fractal terrains. In
Proceedings of the SIGGRAPH '89. ACM Press, New York,
NY, pp. 41-50.

[12] Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E.
and Phillips, J.C. May 2008. GPU Computing. Proceedings
of the IEEE. Volume 96, Issue 5. pp. 879-899.

[13] Pharr, M. et al. 2005. Part IV: General-Purpose Computation
on GPUs: A Primer. In GPU Gems 2. R. Fernando, Ed.,
Addison Wesley, pp. 451-589.

[14] Perlin, K. and Hoffert, E.M. 1989. Hypertexture. In
Proceedings of the SIGGRAPH '89. ACM Press, New York,
NY, pp. 253-262.

[15] Quilez, I. 2008. More noise. Online article. http://rgba.scen
esp.org/iq/computer/articles/morenoise/morenoise.htm.

[16] Voss, R.F. 1985. Random Fractal Forgeries, in Fundamental
Algorithms for Computer Graphics, R.A. Earnshaw, Ed.,
Springer-Verlag, Berlin.

