
Interactively synthesizing and editing virtual outdoor terrain

Giliam J.P. de Carpentier

giliam@decarpentier.nl

Research assignment report

Submitted in partial fulfillment of the requirements of the degree of

Master of Science in Media and Knowledge Engineering

August 2007

Computer Graphics and CAD/CAM Group

Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology

In association with:

W!Games, Amsterdam

The Netherlands

This document has been approved by W!Games for public release; distribution is unlimited

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 i

Table of Contents
Table of Contents ... i

1 Introduction ...1
1.1 Problem Statement..2
1.2 Motivation...2
1.3 Chapter Overview...3

2 Usability ...4
2.1 Terrain Design..4
2.2 Design Loop..4
2.3 Parameter Space...5
2.4 Toolbox Consistency ...6
2.5 Flexible Editing..6
2.6 Tool Speed ..7
2.7 Tool Quality...8

3 Terrain Specification ...9
3.1 Terrain Geometry..9
3.2 Texturing... 11
3.3 Foliage Placing ... 12

4 Procedural Heightfields.. 13
4.1 Procedural Synthesis .. 13
4.2 Brownian Motion Fractals... 13
4.3 Fractal Synthesis .. 14
4.4 Erosion... 21
4.5 River Networks.. 22
4.6 Preliminary Discussion... 23

5 Noise Basis Functions .. 25
5.1 Fourier Synthesis.. 25
5.2 Lattice Noise .. 25
5.3 Sparse Convolution Noise .. 27
5.4 Voronoi Diagrams.. 27
5.5 Preliminary Discussion... 28

6 Heightfields by Example .. 29
6.1 Image Pyramids.. 31
6.2 Explicit Neighborhood Window Texture Synthesis.. 32
6.3 Multi-resolution Texture Synthesis ... 34
6.4 Parallel Controllable Texture Synthesis... 35
6.5 Preliminary Discussion... 38

7 Terrain Geometry Editing .. 39
7.1 Simple Editing... 39
7.2 Warping Tools... 40
7.3 Erosion Tools ... 41
7.4 Terrain Blending... 45
7.5 Preliminary Discussion... 50

8 Terrain Texture Editing ... 52
8.1 Terrain Texturing Methods .. 52
8.2 Splatting Extended ... 55
8.3 Texture Projection... 56
8.4 Preliminary Discussion... 57

9 Foliage Placement .. 59
9.1 L-Systems.. 59
9.2 Density Evaluation .. 60
9.3 Density Evaluation Extended .. 61
9.4 Preliminary Discussion... 63

10 Current Applications ... 65

11 Conclusions... 68

Bibliography ... 70

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 1

1 Introduction
 Ever since the early days of computer graphics (CG), research has been conducted on modeling

and rendering three-dimensional (3D) virtual environments. For a few decades or so, practical

applications of this research were limited to offline movie production. Nowadays, even desktop

computers have enough processing power to render virtual environments at interactive or even

real-time speeds. Consequently, applications like Virtual Reality training simulations and 3D

computer games have become feasible.

 With the ever increasing processing power of computers, it is possible to create more and more

complex worlds at real-time speeds. For example, cutting edge 3D shooting games went from

looking like Figure 1.1 to Figure 1.2 in less than fifteen years.

 FIGURE 1.1 Wolfenstein 3D (id Software, 1992) FIGURE 1.2 Gears of War (Microsoft Game Studios, 2006)

 From the point of view of a ‘gamer’, this increased level of detail adds to the realism and

immersiveness of these virtual 3D worlds. From the designer’s perspective, using this increased

processing power can add to the artistic freedom and can give the product a cutting-edge look.

However, this graphical complexity comes at a cost. Creating more detail is generally laborious and

is, consequently, expensive. [TATA05].

 Content creation has been traditionally a manual process to get the most out of the possibilities of

a hardware platform. But this situation will not be maintainable for much longer as content creation

is increasingly becoming a major bottleneck in game production. Hence, a shift from handcrafted to

(semi-automated) generated content is slowly taking place.

 This report focuses on only one of the aspects of designing content for virtual environments:

outdoor terrain. More specifically, it explores ideas and techniques that are or would be helpful in

the process of designing outdoor terrain for 3D computer games. However, general ideas and

techniques presented here might be applicable to other areas of the game level design process too.

Also, other types of virtual-reality (VR) applications (e.g. 3D simulations and virtual workbenches)

that require virtual terrain might benefit from the discussed ideas.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 2

1.1 Problem Statement

 The problem addressed in this research report is best described as:

What features would an application need to have to intuitively, effectively and efficiently aid a game

level designer in creating and editing virtual terrains, by automating tedious work as much as possible

without limiting his/her creativity?

 Although this question is not directly answered in this report, recommendations concerning the

designer’s efficiency are given, together with a survey of techniques aimed at improving different

aspects of this design process.

1.2 Motivation

 As discussed on page 1, the manual creation of content is not scaling well with the increased

technological possibilities and user’s expectations. The game industry is currently wrestling with the

problem of ever growing artist teams to keep up with the technological possibilities of game

platforms. Currently, these artist teams handcraft most of all the geometric models and shading

detail required for 3D characters and environments to make it look as realistic as possible. This has

become one of the major expenses in all multi-million game productions.

 Having ‘smarter’ techniques available to level designers that partly alleviate this burden by (semi-)

automating laborious tasks is slowly becoming indispensable. Yet many of the current tools

available to designers leave much to be desired. Therefore, investigating ways to support the

workflow of a level designer might be very fruitful.

 This report focuses on both commonly available and lesser-known techniques for modeling of

terrains for use in computer games. These techniques are investigated from a technological point of

view and are assessed based on their effectiveness as an aid to the level designer. Also, ideas will be

sought after to create a toolset to maximally support an artist’s design workflow, without enforcing

a predetermined order of design steps, to maintain maximum flexibility.

 Because the report focuses on computer games, the scope is limited to only a (small) part of the

field of 3D computer graphics. Namely, to graphics systems that focus on render speed, ruling out

many systems that use more advanced off-line rendering techniques.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 3

1.3 Chapter Overview

 In Chapter 2 a short analysis of the requirements of game level designers is given and general rules

of thumb about usability, efficiency and effectiveness of tools related to level design are described.

Chapter 3 describes the different elements of terrain modeling and explains why this report is

mostly limited to heightfields.

 Chapter 4 explains the basic ideas of both experimental and trialed procedural methods to

generate a heightfield landscape. Chapter 5 describes different methods to generate noise, the

basic building block of most procedural (terrain) algorithms. Chapter 6 discusses different texture-

by-example techniques. These techniques are able to generate images (or equivalently,

heightfields) that are like, but not equal to, a given example image/heightfield.

 Chapter 7, 8 and 9 focus on different aspects of editing handcrafted or generated terrain.

Specifically, Chapter 7 discusses editing heightfields, Chapter 8 covers editing terrain texturing and

Chapter 9 discusses foliage placement.

 Chapter 10 gives an overview of the currently available editors and generators, focused on

heightfields.

 Preliminary discussions can be found in chapters 4 through 9, comparing the techniques discussed

in each individual chapter from a practical point of view. These discussions complement the overall

conclusions that can be found in Chapter 11.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 4

2 Usability
 This chapter shortly introduces the reader to the context of terrain design. Then, different aspects

of toolbox design for level designers are discussed, aimed at optimally supporting these users in

their creative process.

2.1 Terrain Design

 A system developed with the techniques mentioned in this report would assist game level

designers in creating outdoor terrain for computer games. These terrains could be used as a basis to

add level object like roads and buildings to.

 In today’s outdoor game levels, different areas usually require different amounts of time to design

and tweak. This is because storylines and (pre-scripted) actions are usually focused around multiple

key points or routes to create pre-designed experiences for the players, thus limiting the need to

design all areas on a level down to the smallest scale. Supporting designers at multiple scales is

therefore an important factor in maximizing their efficiency. So placing, for example, vast amounts

of trees in large areas where less control is needed might be done algorithmically (i.e. procedurally)

to make this area more interesting in a few steps. On the other hand, strategically placing a few

large trees in (often smaller) key areas for a player to hide behind might still be preferred to be done

with complete control over each tree’s location.

2.2 Design Loop

 Ideally, designing game levels is an iterative process. Often,

designers create a fairly detailed level which is then evaluated.

See Figure 2.1. Evaluation involves testing a level for the amount

of entertainment, which is hard to estimate beforehand. When

the level doesn’t ‘feel finished’, the level is tweaked again.

Tweaking a level might involve moving only a few objects around

or, for example, slightly moving a road. But when that road needs

to be adjusted and a large terrain feature like a mountain is in its

path, a large area might be affected.

 However, most applications available to level designers typically

are designed around the idea of working from large to small. See

Figure 2.2. The arrows indicate the direction of the (enforced) workflow. After the initial idea of a

level has been decided, designers have a choice of starting off with a global approximation of this

outline. One way of doing this is by searching for a (real-world) example of the type of terrain they

need. Another way is to have an application generate a random terrain algorithmically (i.e.

procedurally). Techniques used to do this are discussed in Chapter 4. Having a rough first

FIGURE 2.1 An ideal level design workflow

Tweak large terrain
features, small terrain
details, game objects

Tweak large terrain
features, small terrain
details, game objects

CompileCompile

Evaluate gameplayEvaluate gameplay

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 5

approximation for a level greatly reduces production time when it is relatively close to the desired

end result. Then, large-scale global features can be added, followed by small-scale local editing. The

disadvantage of the typical workflow using these tools is that, once an approximation for the whole

level is chosen, only lower-level manual editing is possible. This means that only a workflow from

left to right in Figure 2.2 is supported, making iterative design of both large and small features, as

suggested in Figure 2.1, very difficult.

 This report is partly dedicated to editing techniques that would allow higher-level handcrafted or

generated features to be mixed and edited at any scale at any time in the design process, to better

support the iterative process of a tweak-and-evaluate workflow. Integrating such techniques into

the applications available to the designer would, for instance, allow adding a detailed generated

mountain in a designated area with minimal effort even after other areas are already tweaked.

FIGURE 2.2 A typical (left-to-right) workflow supported by current applications

2.3 Parameter Space

 Although higher-level tools might be more mathematically involved and harder to code, the user

of such a tool should not be required to understand the technical details before he/she can use it

proficiently. All that the user should be concerned about is achieving the desired result. This means

that tools should behave in an intuitive way that is predictable to a non-technical user. The function

of any tools should be unambiguous and easily describable to non-technical users.

 One aspect of creating intuitive tools is choosing the right parameter space. Several aspects come

into play when designing an intuitive toolset that lends itself to intuitive tweaking:

- Tools that allow parameters to be tweaked to achieve different results should offer an

appropriate amount of freedom. Too few parameters, and more advanced users are unable

to fully benefit from the technology. Too many, and novice users might get overwhelmed

by the possibilities.

- Parameters should have a descriptive name of the effect it has, which is not per se a term

used in scientific literature.

- Brainstorm session
- Design Document
- Central Theme
- etc.

- Brainstorm session
- Design Document
- Central Theme
- etc.

Procedural generation of
a random terrain

Procedural generation of
a random terrain

Start from scratchStart from scratch

Import real-world terrainImport real-world terrain

Add or edit global features
- Mountains
- Hills
- Rivers
- Forest
- etc.

Add or edit global features
- Mountains
- Hills
- Rivers
- Forest
- etc.

Add or edit local features
- Locally edit global feature
- Add detail
- Add single trees
- etc.

Add or edit local features
- Locally edit global feature
- Add detail
- Add single trees
- etc.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 6

- The effect of different parameters should be as independent as possible. Presenting

multiple parameters that only have slightly different effects should be prevented where

possible.

- The value range of any parameter should be intuitive to the user. Having a value range of 0-

1000 with only values between 700 and 800 having a useful effect isn’t the best choice.

2.4 Toolbox Consistency

 As with any design of a user interface, having a consistent set of tools makes working with it more

intuitive. This means the interface of different tools should be as consistent as possible. For instance,

having two tools that both need a radius as input should generally offer the same type of interface

for this particular parameter. This can be achieved through the consistent use of particular input

controls, hotkeys and 3D widgets.

 Also, creating a user interface that is consistent with other applications that level designers are

familiar with will make a tool easier to work with. For example, implementing (customizable) mouse

and key functionality for navigating through a 3D world that is similar to one or more widely used

3D applications is generally appreciated and will increase the overall productivity.

2.5 Flexible Editing

 The iterative nature of level design benefits from a powerful multiple-undo function. Having ‘Ctrl-

Z’ functionality greatly helps the designer to experiment with tweaking an effect that requires the

execution of a sequence of multiple tools. Undoing multiple actions allows the user to backtrack to

any given point in the action history and restart from there.

 Having a representation that allows users to tweak a tool that was applied before the most recent

operation, without undoing the intermediate operations, further increases this flexibility. One

representation that offers this functionality is the separation of (manipulated) data in multiple

layers. Many designers already are familiar with this idea from Adobe Photoshop, a well known and

powerful 2D image manipulation application. In Photoshop, the user can create multiple layers in a

hierarchy and select the layer a tool should be applied to. These layers are internally combined

bottom-to-top by the application to render the actual image. Combining a layer with the layers

below is done using a user-selectable combine operation per layer, optionally limiting the effect of a

layer to a local area using an additional mask image. This allows Photoshop users to separate

different elements of a picture and independently apply operations to them (e.g. draw with the

selected brush, translate, scale and blur) or apply operations to the relation between a layer and the

layers below (e.g. blend mode and opacity setting). A possible drawback of this layered

representation is the memory footprint that grows linearly with the number of layers.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 7

 Even more flexible and powerful is the representation of operations as a two-dimensional flow

graph of operation nodes. This allows the user to apply a tool by connecting the input(s) of a new

operation node to any of the already present nodes in a visualized flow network. Tweaking any of

the previous steps can be accomplished by changing parameters in any of the nodes and

recalculating outputs until all nodes are up to date again. A few powerful high-end content creation

and processing applications use this representation. Examples of these are Apple’s Shake

compositing tool and Side Effects Software’s Houdini procedural 3D animation/effects tool. A

typical designer might not be used to ‘thinking’ in flow graphs and operation building blocks,

causing a steep learning curve. However, expert users might be very pleased by the, otherwise hard

to accomplish, flexibility. A drawback of this system is the amount of recalculation required when

applying a change to the flow graph. This can be partly alleviated by reusing cached outputs if none

of their inputs was affected by a change. Of course, caching increases the memory footprint

considerably for large flow charts.

 In short, which of the above representations is the most appropriate depends on the need for

flexibility, the available system resources and the expertise of the user. Favoring one above the

other requires a clear view of the exact toolset and its use and is therefore beyond the scope of this

report.

2.6 Tool Speed

 Even complex ‘tweakable’ tools and parameters become usable when their effect is directly visible.

Because optimizing a virtual world for its amount of fun or artistic beauty isn’t an exact science, it is

often a process of trial-and-error. Shortening the feedback loop gives designers the opportunity to

experiment with parameters more freely. Therefore, having tools that can be used at interactive

speeds is a valuable asset.

 If calculating the effect of a tool is too compute intensive to allow a preview of the effect in the

edited world at interactive speeds, previewing the result at a smaller resolution might be a good

compromise. This smaller preview might either be a smaller window or a less dense geometry

representation the operation is performed upon. Obviously, this is only useful if the preview of the

result at reduced resolution is a fair approximation of the final result.

 The hardware available to designers typically consists of a stand-alone powerful desktop computer

with plenty of RAM and a high-end graphics card with a powerful GPU. Since the early days of

hardware-accelerated video cards, the processing power of the GPU has increased dramatically and

remains to grow faster than CPU processing power. Factors that contribute to this fact are the

increased clock speeds, amount and speed of onboard dedicated memory and the shift from a

single special-purpose graphics processing unit to multiple (almost) general-purpose

programmable Single Instruction, Multiple Data (SIMD) vector processing units.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 8

 Many algorithms that can be implemented for partial or full parallel execution can therefore be

sped up somewhere between a half and two magnitudes when work is transferred from the CPU to

the GPU. Because terrain manipulation is very data-intensive and for the most part SIMD-like,

executing these manipulations on the GPU is very likely to increase the performance. Furthermore,

multi-core CPUs are becoming more and more mainstream, increasing the potential of parallelism

even further. Having fast tools increases the user’s efficiency, which is why all algorithms mentioned

in this report are evaluated, among other criteria, for their potential to execute in parallel.

2.7 Tool Quality

 Even though procedurally generated and placed geometry, texturing and foliage might look nice

at a first glance, level artists/designers easily spot the limitations of most current implementations.

Generally, natural terrain has different types of features at different locations. Also, most levels are

designed with a clear idea of what type of environment it should be set in. However, most

procedural techniques are best suited for creating one or a few terrain types (e.g. ridged mountains,

rolling hills, sand dunes, rivers or islands). Therefore, it isn’t recommended to have one technique

create the terrain for a whole game. Having a plethora of different techniques to choose from

enables the designer to pick the right tool for each job.

 The quality of any terrain tool is difficult to measure. If all processes involved in the creation of a

certain type of landscape are fairly well understood, it is possible to create a model of these physical

effects and run a simulation. Although this will result in physically most accurate results, running a

full simulation might be impossible due to a limited understanding of a process or impractical due

to the vast computational power required for an accurate simulation. Luckily, as an engineer and

artist, not as a scientist, a level designer is generally satisfied if a tool is available that has the desired

effect, whether such a tool is physically correct or not. For him, and for the typical end-user,

subjective beauty of the result is much more important than objective measurements,

mathematical elegance or statistical proof. For this exact reason, this report focuses mainly on the

effects of different (efficient) methods, not on mathematical backgrounds.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 9

3 Terrain Specification
 Different aspects of terrain come into play when designing appealing virtual landscapes. Three of

the main aspects are geometry, surface properties (texturing) and placement of natural objects.

These three topics are introduced in this chapter and further discussed in the remaining part of this

report.

3.1 Terrain Geometry

 Before discussing terrain geometry

generation and editing, a small overview is

given of the different options for

specifying terrain geometry, each with its

advantages and disadvantages for use in

interactive applications. Choosing the type

of topology to use for terrain geometry

has a large impact on the possible types of creation and editing algorithms. But it also greatly

influences what rendering techniques are suitable, how level-of-detail can be implemented in the

real-time engine (i.e the core of each real-time graphics application) and whether it is possible to

have overhangs, arches and caves. Having such impact, the choice of which types of terrain

geometry can be used is often dictated by the graphics engine. Five types of geometry are

distinguished and described below. Also, see table 3.1.

Tetrahedrons

 Starting with the most flexible type of terrain specification, tetrahedrons allow variable densities of

vertices. Because of this flexibility, tetrahedrons are often used in physics simulations that use finite

element techniques. Also, solid modeling can be implemented using tetrahedrons. However, this

flexibility comes at the cost of larger storage requirements and more complex algorithms to handle

the irregular 3D shapes and densities. Because of this, their use in interactive terrain specification,

generation and rendering is limited. For this reason, algorithms working on tetrahedrons are not

discussed further in this report.

Voxels

 Voxels are values on a regular 3D grid. Like tetrahedrons, voxels are volume based. So, creating

holes, overhangs and caves is relatively easy. However, the amount of local detail is limited by

global resolution of the regular grid. Also, the same resolution is present (and takes up memory)

where less resolution is needed. Because of this, voxels are generally memory inefficient.

Furthermore, rendering voxels is generally less efficient than rendering triangle surfaces on today’s

polygon-based hardware accelerated video cards. Therefore, only few games actually use voxels. So,

like tetrahedrons, voxels are not relevant enough to be treated in this report.

 Irregular topology Regular topology

Solid Tetrahedrons Voxels

3D surface Irregular mesh Regular mesh

2½D surface Heightfields

TABLE 3.1 Types of terrain geometry specification

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 10

Irregular Meshes

 Irregular meshes are surface based, have flexible topology and might have varying densities of

vertices. Although ideal for surface specification, the implementations of high-level modeling tools

are more complex than implementations of equivalent tools for regular mesh representations.

Rendering irregular meshes at full resolution is well supported by hardware. However, terrain

rendering often requires different LOD (level-of-detail) levels at different parts of the mesh to render

terrain at full resolution near the camera while rendering a coarser mesh further from the camera.

Accomplishing this for irregular meshes is generally much more complex (and much more compute

intensive) than for regular meshes. This is also true for collision detection and response. Both of

these issues are serious drawbacks in computer games because almost every 3D game needs fast

level-of-detail schemes and collision detection to be able to run at real-time speeds. Because of this,

irregular meshes are often only used for objects like characters and trees, where it is generally

sufficient to control the level-of-detail for the object as a whole and only require approximate

collision detection.

Regular Meshes

 Having a regular (grid-like) topology greatly reduces the complexity that is coupled with irregular

meshes. Regular meshes are powerful enough to model overhangs and have varying vertex

densities, but do not allow specification of arches, connected tunnels or other features that require

holes in the surface geometry. Also, most irregular mesh algorithms (procedural generation, editing,

level-of-detail and collision detection) can be simplified and optimized for regular meshes. For

applications where heightfields are not sufficient because overhangs are needed, regular meshes

might be a good choice.

Heightfields

 Although the least powerful, most computer games use heightfields to represent terrain. A

heightfield (also called heightmap, (digital) elevation map or DEM) represents a discretized height

function of 2D coordinates on the horizontal plane, using height samples at regular discrete

spacing. A mesh of (vertically displaced) triangulated square quadrilaterals is normally used as its 3D

representation, but other topologies are sometimes used also. Rendering and other relevant

techniques have been optimized for heightfields. Also, heightfields can be stored very compactly,

because only data for the vertical axis needs to be stored.

 Because heightfields are discrete functions of 2D space, they can be stored, visualized and even

edited as grayscale images. As a 2D grayscale image, the greyvalue represents the local height.

Editing techniques for heightfields and digital images are therefore interchangeable. By convention,

the maximum altitude is represented by pure white and the minimum altitude by black.

Heightfields of considerable detail are publicly available for planet Earth. These can be downloaded

and used as a reference or a starting point for anyone interested. For example, see

http://library.usgs.gov.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 11

 Another advantage of heightfields is the ease of texture mapping. A simple vertical orthographic

projection of a detailed texture onto the heightfield is generally sufficient. See the next paragraph

for an explanation of the term texture. However, when a heightfield contains very steep areas, a

simple vertical projection leads to an uneven distribution of texture resolution. Then, a more

advanced texturing technique might be required to prevent the otherwise uneven distribution of

texture resolution from becoming noticable. Readily available satellite photographs can be used as

texture images, which can be found online for the whole planet. For example, see

http://www.truearth.com/.

 When supported by the engine, heightfields can be replaced locally by more powerful

representations (e.g. regular meshes) where more resolution or geometry like overhangs or arches

is required. For example, see [GAMI01] for a 3D displacement mapping technique to create

overhangs with heightfields.

 Because of the overall advantages, heightfields are still the most common way to specify terrain

for real-time 3D applications. Consequently, this report has limited its geometry-related topics to

the use of heightfields. Literature can be found on regular heightfields that are either based on

quadrilaterals, triangles or hexagons. For example, see [DIXO94] for procedural terrain generation

techniques for different topologies. However, most literate assumes a quadrilateral structure and,

moreover, almost all applications use regular quadrilaterals, also known as quads. For this reason,

heightfields mentioned in this report are assumed to be based on regular quadrilaterals, unless

explicitly stated otherwise.

3.2 Texturing

 To render the terrain geometry, all surfaces have surface properties assigned to them. These

properties consist of local mapping parameters (i.e. the texture mapping) and a shader. The shader

uses the local parameters, the camera direction, the local geometry and possibly other input images

(called textures) to calculate the color of a screen pixel. Surface shading might be as simple as

outputting an evenly lit projected texture on a surface or as complex as procedurally generating

animated natural phenomena (e.g. rendered reflective caustics of a water surface). The rendering

process of shading surfaces can be hardware-accelerated by today’s high-end desktop computers.

 Besides creating the terrain geometry, designers also need to assign these surface properties to

different areas (e.g. an image of rocks in one place and grass in another). This report introduces the

reader to common texturing techniques that can be found in current applications and discusses a

texturing technique called texture splatting in detail in Chapter 8.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 12

3.3 Foliage Placing

 Although object placement is supported by most level design tools, placing foliage (modeled

grass, bushes, trees, etc.) that looks natural can be tedious if a level designer is creating areas with a

lot of vegetation. The distribution density of foliage in the real world depends on the many factors

including soil, temperature, humidity, slope, height and even on other species of flora in the area.

Having powerful tools that can place vegetation while considering (some of) these factors greatly

simplifies the process of natural and balanced placement of different types of vegetation. This is

discussed in Chapter 9.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 13

4 Procedural Heightfields
 In the following four chapters, algorithms are discussed that are related to generating and editing

heightfields, the most common representation of terrain geometry. This chapter discusses

procedurally generating heightfields.

4.1 Procedural Synthesis

 Procedural synthesis or generation is the term used for techniques that create content

algorithmically. These algorithms do not need to be physically correct, elegant or deterministic.

They have two advantages in the field of computer graphics. One is the smaller storage

requirement. The code needed for procedural algorithms only takes up a fraction of the storage

space that is required to store the large (or even infinite) amount of detail it can output. The other

advantage is design. Whereas handcrafted data is generally only used once, a carefully designed

parameterized algorithm could be reapplied many times to generate varied output of comparable

quality. On the other hand, design through the use of procedural algorithms can be complicated if a

specific result is desired that cannot easily be expressed in the exposed parameters. This

disadvantage can partly be alleviated by the techniques discussed in Chapter 7.

 Generating content through procedural algorithms has proven to be fruitful in fields like the

generation of plants [PRUS90], cities [PARI01], clouds [VOSS89], complex (fractal) implicit surfaces

[PERL89], texture generation [PERL85] and heightfields [MAND82]. Because procedural techniques

are very promising in the field of design, a considerable share of this report is dedicated to

procedural techniques that are directly or indirectly related to terrain generation and foliage

placement. This chapter discusses procedural algorithms related to the generation of natural

heightfields.

4.2 Brownian Motion Fractals

 The first person who noted mountain-like properties of a mathematical process was Mandelbrot.

In [MAND82] he observed the similarity between a trace of the one dimensional fractional Brownian

motion over time and the contours of mountain peaks. Extending this idea to two dimensions

created a ‘Brownian surface’ resembling a mountainous scene. This Brownian process was later

generalized to fractional Brownian motion (fBm) surfaces with a 1 / ƒβ power spectrum. β is called

the spectral exponent and is directly related to the fractal dimensionality. Although mountains do

exhibit some self-similarity, the formation or shape of mountains is not (known to be) quantitatively

connected to fractals [LEWI90]. But as a descriptive model, this does not have to be an objection to

use it to approximate natural terrain.

 FBm surfaces do posses some features that visually distinguish them from real mountainous

terrain. The increments of an fBm process have the property of being isotropic and stationary,

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 14

creating terrain that is statically invariant under translation and rotation. This will result in terrain

that looks too homogeneous when compared to mountainous areas. Also, fBm surfaces have no

local spatial relationship between amplitudes of different frequencies. Whereas natural scenes

clearly have, as mountain tops are on average locally rough and valleys are locally smooth. Even so,

fBm models are still the basis for many procedural terrain generators [MUSG93, p. 33].

 By definition, fBm is the integral over time of increments of a pure random process, also called a

random walk. This stochastic process can be synthesized by summing over a basis function at

multiple discrete frequencies with different amplitudes to create its characteristic 1 / ƒβ power

spectrum. Examples of possible basis functions are band-limited noise functions and sine waves.

Varying the basis function and power spectrum has proved to be a powerful method to generate

landscapes. Because natural terrain is not per definition best approximated by an fBm surface,

exploring different variations that do not yield a true fBm surface, but do have some fBm-like

qualities can yield better (more natural) results. Also, approximations can be calculated in several

different ways. Most terrain generating applications are based on one of the approaches discussed

below.

4.3 Fractal Synthesis

 One possible implementation of creating an fBm surface involves the displacement of a plane by

summing over the effect of many independent random Gaussian displacements (faults, or step

functions) with a Poisson distribution. This was originally employed by B.B. Mandelbrot [MAND82]

and R.F. Voss [VOSS85] to create the first procedural landscapes.

Poisson faulting

 ‘Fault formation’ and ‘particle deposition’ are two variants of Poisson faulting. Fault formation is

introduced in [KRTE01] and is illustrated in Figure 4.1. Faults are created by repeatedly displacing

the heightfield values at one side (i.e. halfspace) of a randomly chosen line through the heightfield

by some amount. This process is repeated many times while the amount of displacement per

iteration is slowly decreased. Because the result might still be too rough and aliased afterwards, a

low-pass filter is normally applied as a final step.

 After 4 iterations After 64 iterations After 64 iterations and filtering

 FIGURE 4.1 Creating a fault formation heightfield. Higher areas are lighter

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 15

 Fault formation can create elongated mountain ridges and faults. However, most fine detail is lost

because of the low-pass filtering. Also, the steepness of faults is directly related to the parameters

used for the low-pass filter. Furthermore, many iterations are necessary to create a reasonable

complex landscape. Creation is mostly fill rate limited because, on average, half the height values

are updated for each iteration. It follows that this algorithm has an O(n3) work complexity, where n is

the width or height of the heightfield (expressed in number of vertices) and the number of

iterations is related to n. Because of these drawbacks, this technique is seldom used in commercial

heightfield applications. One of its merits is the applicability of this idea to primitive shapes other

than vertically displaced planes (i.e. heightfield), which might be difficult to do with other

techniques. For example, [ELIA01] discusses fault formation on spheres. For a more elaborate

discussion of fault formation, see [SHAN00].

 Another type of Poisson faulting is called particle deposition, which

involves a simple simulation of dropping particles on a flat plane.

When a dropped particle touches the heightfield, it will ‘roll’ further

downwards until a local minimum is reached and there it will increase

the value of the heightfield with a small value Δ. See Figure 4.2. When

enough particles are dropped, the produced pattern will (somewhat)

resemble viscous fluid (e.g. lava). Because two adjacent heightfield

elements can only differ by Δ, the maximum steepness depends on Δ

and the heightfield grid spacing. This ‘roll’ simulation is a very crude approximation of thermal

weathering (See Section 7.3). The shape of the terrain can be controlled by changing the drop

pattern. This technique is primarily suited for creating volcanic terrains. Because of its local control

and simple implementation, this technique might be useful for interactive editing.

Midpoint Displacement

 Introduced by Fournier et al. [FOUR82], midpoint displacement has long been the preferred

technique to efficiently generate terrains. Heightfields are created by recursively subdividing (i.e.

tessellating) a heightfield mesh and randomly perturbing all new vertices. When the perturbation

has a Gaussian distribution and a standard deviation of 2-ℓH, the result will be an approximation of

an fBm when ℓ is the subdivision level and H is the self-similarity parameter in the range [0, 1]. See

the paragraph on noise synthesis on page 17 for more information on the relation between fractal

terrain roughness and H. All midpoint displacement schemes have complexity O(n2), n being the

width of the (typically square) heightfield. Because the amount of calculation per vertex is also very

limited, midpoint displacement schemes are very efficient.

 Different subdivision schemes have been devised for different mesh topologies. [FOUR82] used a

triangle subdivision that involves interpolating between the two vertices. Mandelbrot introduced a

subdivision scheme specifically for hexagon meshes [MAND88]. However, these topologies are

seldom used in terrain specification and will not be discussed in this report.

FIGURE 4.2 Flow simulation in
particle deposition

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 16

 The widely used diamond-square scheme for quadrilaterals was also presented in [FOUR82]. This

two-phase algorithm subdivides a regular square grid at any level by first calculating and perturbing

the (new) exact midpoints of each set of four nearest neighbors that together form a square. Then,

another set of vertices is interpolated between each set of four nearest neighbors that together

form a diamond (two of which were calculated at previous levels and two were calculated in the

phase 1 of this subdivision level) and is perturbed. This will create a new regular grid of

quadrilaterals. See Figure 4.3.

 The diamond-square scheme creates visible

anisotropic artifacts along the (eight) directions of

interpolation. The square-square scheme presented in

[MILL86] subdivides a regular mesh by using its ‘input’

mesh as a regular mesh of control points for a

biquadratic uniform B-splines interpolant. This results

in less visible anisotropic artifacts. A disadvantage of this interpolation scheme is the smaller size of

the mesh after each subdivision step. Also, the fact that the resulting surface generally doesn’t go

through the set of control points, but only approximates them, might be a drawback for some

applications.

 Midpoint subdivision has been used in many simple terrain generation applications. It is generally

easy to understand and implement. Furthermore, it is very efficient if a whole patch needs to be

subdivided and stored in memory. For example, in square-diamond subdivision, each terrain vertex

needs only to calculate one interpolation and perturbation, whereas most other synthesis

techniques (see next paragraph) need many interpolations. But because of its nested structure, this

method is less suitable for ad-hoc local evaluation and only works on heightfields of 2k x 2k vertices.

 The principle of interpolating values of neighboring vertices and adding a perturbation was

extended to Generalized Stochastic Subdivision in [LEWI87]. There, a larger neighborhood, together

with an autocorrelation function for each subdivision level, is used to allow creation of a mix of

stationary (noisy) and non-stationary (periodic) patterns. Although flexible, it needs many more

parameters than the methods above. For this reason, most terrain generating applications do not

support generalized stochastic subdivision. However, it might have some limited use in creating

terrain types that are hard to create with other techniques, e.g. (periodic) sand dunes.

Fourier Synthesis

 Fourier synthesis can be applied for terrain generation as follows: First, the 2D Fourier transform is

calculated of a random Gaussian white noise heightfield. Secondly, the noise in the calculated

frequency domain is multiplied with a pre-designer filter to create the desired frequency spectrum.

Lastly, the multiplied result is transformed back to the spatial domain using the inverse Fourier

transformation. When the right frequency spectrum is chosen, an fBm process is approximated

[VOSS89]. An obvious advantage of this approach is the exact control over the frequency content.

 a) b) c) d) e)

FIGURE 4.3 Square-diamond midpoint displacement. b)
and d) are intermediate results after applying the first
phase. c) and e) applied phase 2. From [OLSE04]

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 17

Disadvantages are the periodicity of the final surface and the O(n2 log n) complexity of 2D FFTs. Also,

any heterogeneous extension for local spatial control of detail during construction is less

straightforward than for noise synthesis (see below).

Noise Synthesis

 Noise synthesis is the iterative summing over band-limited noise functions. The noise functions

approximate a band-limited sum of frequencies with random amplitude and phase. By calculating a

weighted sum of 2D noise functions of different band-limited frequency ranges, any power

spectrum can be composed, including a 1 / ƒβ spectrum, approximating an fBm surface.

 When ()G t is the Fourier transform of a function g(t),
1

()
t

G
c c

 is the Fourier transform of ()g ct . This

means that when the input of a band-limited noise function N is scaled by (a positive) c, the

frequency spectrum of N is scaled by 1 / c. So, having just one band-limited noise function and

scaling its input and its output will create another band-limited noise function with a scaled mean

frequency. Noise synthesis can therefore be written as:

λ λ
=

= ∑
max

max
min

min

(,) (,)
L

L l l l
L

l L
H x y w N x y

 Here, l represents a detail level and λLmin and λLmax represent the largest resp. smallest scale level any

band-limited detail should be visible at. This means that Lmax - Lmin +1 is the number of summed noise

functions. Increasing the number of calculated levels increases the total range of frequencies

covered at the cost of extra computing power. λ, called the lacunarity, is the scale between the

mean frequency of each of the successive noise levels. Increasing the lacunarity will increase the

gaps between the separate noise evaluations, creating an uneven distribution of represented

frequencies, but fewer levels will be needed to cover the same total frequency range. Somewhat

like the subdivision scale of midpoint displacement, most noise synthesis implementations use λ =

2, or a number very close to it, as the optimal tradeoff between accuracy and speed. As a result, the

mean frequency of the noise function is roughly doubled at each level. Because of this doubling of

frequencies, levels are also called octaves, borrowed from sound theory. The constant w controls

the roughness of the synthesized result and can be written as a function of λ and the spectral

exponent β, introduced earlier [MUSG93, p. 37]. The relation between these three parameters is as

follows: w = λ-β/2. Often, the terrain roughness is specified by the self-similarity factor parameter H,

with β = 1 + 2H. The fractal dimension Df is 3 - H. To qualify as a fBm, H must be in the interval [0,1].

This means the fractal dimension lies between a 2D surface and a 3D volume (assuming that an

infinite amount of levels would be calculated). True (non-fractional) Brownian motion has a 1 / ƒ2

power spectrum and has therefore a fractal dimension Df of 2½. See Figure 4.4.

 The actual noise function can be constructed in different ways, each having a different

characteristic band-pass quality and construction speed. An overview of these functions is given in

Chapter 5.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 18

 The above formula can be generalized to create more types of terrains by allowing a function to

transform each noise octave before it is added:

λ λ
=

= ∑
max

max
min

min

(,) ((,))
L

L l l l
L

l L
H x y w T N x y

 The turbulence function T(n) [PERL89] is one of the first algorithms to explore the possibilities of

this generalization by defining T(n) as abs(n). Taking the absolute value of [-1, 1] noise folds it at each

zero crossing, creating discontinuities and doubling the number of (positive) peaks. This creates

more billowy, turbulent, cloud-like fractal landscapes. See Figure 4.5. Another variant is T(n) = 1 -

abs(n). This transform has the opposite effect, creating ‘ridges’ at the discontinuities around n = 0.

The results created with non-linear functions are still fractal, but do qualify as fBm surfaces.

 H = 1 : Df = 2, w = ¼√2 H = ½ : Df = 2½, w = ½ H = 0 : Df = 3, w = ½√2

 FIGURE 4.4 Heightfield of different fractal dimensions. Perlin noise

 Of course, many other functions might prove useful for different types of terrain. One flexible way

to give the user the freedom to experiment with this would be to present a simple input/output T(n)

mapping function as an editable (e.g. drawable) curve.

 Local properties of real terrain are not stationary (i.e. statistically translation invariant). Foothills are

smoother, while mountain tips are more jagged. The midpoint displacement and noise synthesis

approaches can be modified to simulate this observation by controlling the local statistics. To do

this, T can be defined to depend on the sum of lower frequency octaves, i.e.:

 fBm : T(n) = n Billowy : T(n) = abs(n) Ridged : T(n) = 1-abs(n)

 FIGURE 4.5 Heightfields with one octave (top row) and eight octaves (bottom row) of transformed noise. Perlin noise, H = ½

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 19

−= ⋅1max
min

() ((,))L
LT n G H x y n

 Since higher octaves will have less amplitude (the factor wl), the sum of all lower octaves
−1max

min

L
LH can generally be interpreted as an approximation of max

min

L
LH . When G(n) is a function that is

positively correlated to n, T(n) will have the effect of locally increasing the noise amplitude at higher

altitudes. This has the desired effect of creating rougher terrain (with a higher fractal dimension) at

high altitudes and smoother terrain at low altitudes. This type of fractal is called a heterogeneous

multifractal. Another way of creating heterogeneous multifractals is by multiplying multiple noise

octaves instead of summing them.

 λ λ
=

= +∏
max

max
min

min

(,) ((,))
L

L l l l
L

l L
H x y w O N x y

 Here O is an extra offset parameter that is somewhat

reciprocally related to the roughness of the result. The

actual range of output values for this type of

multifractal is highly unpredictable. Therefore, the

output range needs to be measured after creation, so

it can be rescaled to a predictable range (e.g. [0, 1]).

See Figure 4.6 for an example. In [EBER03, p. 498-506],

different variants of these multifractal techniques are discussed in detail.

 The octave transformation function T(n) can also be made to depend on other inputs. For example,

the function T(n) = M(s x, s y) n, with s being a scaling factor and M(u, v) being the local greyvalue of a

2D image at coordinate (u, v). Here, T(n) is used to control the local roughness by looking up an

amplitude multiplier from another image. The 2D image itself can also be a procedurally generated

fractal. This is just one example of cascading, a powerful concept where a procedural algorithm uses

other procedural algorithms or complex handcrafted work as input parameters. This idea fits nicely

with layers and flow charts, discussed in Section 2.5.

Range Mapping

 Another way to create more varying landscapes is to transform the output of H as a post-

processing step :

′ =(,) ((,))H x y P H x y

 To let P(z) be as independent as possible of the exact parameters used to construct H, H is generally

rescaled to the range of [0, 1] as an intermediate step.

 Two functions that are often used for this type of mapping are the bias and gain [PERL89]

functions:

FIGURE 4.6 Height-dependent high frequencies

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 20

= log / log½() b
bbias z z

−

−

<
=

− −
1

1

½ (2) ½
()

1 ½ (2 2)
g

g
g

bias z z
gain z

bias z otherwise

 These functions have the following useful properties:

 These simple properties make them transparent and intuitive to a user. See Figure 4.7 for examples

of these functions, together with their effect on a heightfield.

Domain Mapping

 Range mapping transforms a function’s output. Analogously, domain mapping transforms a

function’s input before the function is evaluated. Besides obvious uses like scaling and rotation,

input perturbation is a valuable and flexible tool when defined as:

′ =

= + +1 2

(,) ((,))
(,) ((,), (,))

H x y H P x y
P x y x N x y y N x y

where N1 and N2 can be any (scaled) noise function. As a result, P perturbs the input coordinates of

H. See [EBER03, p. 450] for details.

 For example, a noise synthesized heightfield that used a Voronoi noise base function (see Section

5.4) will contain many straight ridges. By applying a domain mapping with N1 and N2 being

(differently translated, rotated and scaled) Perlin noise functions, interesting and natural looking

curves and shapes appear. See Figure 4.8. This is another example of cascading different functions

to increase the visual complexity of the result.

=
= =
=

½ ()

(0) 0, (1) 1

(½)
b b

b

bias z z

bias bias

bias b

=
= = =

= − = +

½ ()

(0) 0, (1) 1, (½) ½

(¼) ½ (1), (¾) ½ (1)
g g g

g g

gain z z

gain gain gain

gain g gain g

Original:

‘Glacier’ effect:
P(z) = biasb(z), b < ½

‘Canyon’ effect:

P(z) = biasb(z), b > ½

‘Midland’ effect:
P(z) = gaing(z), g < ½

P
m

ap
pi

ng

Re
su

lt

 FIGURE 4.7 Heightfields after post-processing. Perlin noise, H = ½

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 21

4.4 Erosion

 In [CHIB98] Chiba et al. describe an algorithm that

takes an alternative approach to fractal synthesis by

physically simulating fluvial (water) erosion. This

algorithm iterates a number of times over two

subsequent phases. In the first phase, several erosion-

related data fields are calculated from the current (and

initially flat) heightfield. Then, the data fields are used

to simulate erosive processes on the heightfield. The data fields calculated in the first step are a

water quantity field W, a water velocity vector field V and a collision energy field C, which are all

discretely sampled using regular grids similar to the terrain heightfield. These fields are estimated

using a time-step simulation of many water particles. The water particles are dropped at each grid

point and move downhill. At every simulation step, all cells of the data fields that the particles pass

are updated. When a particle moves into a grid cell which is steeper, the length of the local vector in

V is increased. When a particle enters a grid cell which is less steep, the local length of V is decreased

and the lost kinetic energy is added locally to the collision field C. W represents the total amount of

water that passed through each cell. When all water particles moved outside the terrain heightfield

or do not have any kinetic energy left, the first phase is completed. The second phase uses W, V and

C to calculate how much sediment will be dissolved, transported and deposited, based on simple

empiric rules. See Figure 4.9 for an example of a terrain created by this method.

 Physics-based terrain erosion algorithms, like the algorithm described above, often need many

compute-intensive iterations before the result becomes valuable, making them generally (much)

slower than the fractal synthesis techniques described above. F.K. Musgrave et al. [MUSG89]

describe a two-pass approach as a combination of the two different approaches, which is now

supported by most of the advanced terrain generation applications. First, one of the above fractal

synthesis techniques is used to create a first approximation. Then, an additional erosive pass is run

on this approximation. Depending on the type, strength and number of iterations of the erosion

process, the erosive pass carves out small gullies and river beds and creates flat sediment planes

and talus slopes. When parameters for this second pass are tweaked by a designer, it’s unnecessary

to recalculate the result from the first pass every time. Therefore, caching the intermediate

heightfield might be appropriate. Having such a clear distinction between these phases even allows

 Original heightfield without domain mapping Heightfield with domain mapping

 FIGURE 4.8 Voronoi heightfield without (left) and with (right) noise distorted input

FIGURE 4.9 Result of 100 iterations of fluvial water erosion.
From [CHIB98]

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 22

a complete separation of the procedural fractal generation step and the erosion step. Hence, it

makes sense to offer erosion as an independent tool to the user. Furthermore, having erosion as an

interactive tool increases the flexibility to designers who might need to apply erosion only locally.

This is why this report further discusses erosion as an editing tool in Section 7.3

4.5 River Networks

 One of the drawbacks of all fractal synthesis techniques discussed so far is the lack of explicit river

networks in a terrain. Furthermore, adding realistic rivers to a terrain after the terrain already has

been generated with one of these techniques has proven difficult. Two alternatives will be

discussed here that create river networks before the final heightfield is calculated.

 In [KELL88] A.D. Kelley et al. describe a procedure to

recursively create drainage networks first that are then

used to create the topography of the terrain. The algorithm

iteratively inserts tributaries into the drainage network

using empirical rules, creating a fractal network of streams.

Then, a (smooth, non-fractal) surface is fitted by a surface

under tension technique. See Figure 4.10. Although this

surface might afterwards be distorted to create rougher

terrain, the distortion cannot be too strong, as streams

might otherwise end up flowing uphill.

 In [BELH05] F. Belhadj and P. Audibert discuss the idea of modeling outlines of mountain ridges

using pairs of 2D Gaussian-shaped particles moving in opposite directions. These particles are

randomly translated using fractional Brownian motion. After settling, the trails made by these

particle pairs are interpreted as rough outlines of mountain ridges. Then, virtual water particles are

placed at these ridge lines and simulated to roll downhill. The trail of these water particles is then

interpreted as the shape of a river network. At this point, the heightfield is partly filled with fine

ridge lines and river trails. By extending the idea of diamond-square midpoint displacement, all

other values of the heightfield are recursively interpolated. See Figure 4.11.

FIGURE 4.10 Drainage network and fitted (non-
fractal) surface. From [KELL88]

 Heightfield after ridge and water particle simulation Heightfield after midpoint displacement

 FIGURE 4.11 Fractal landscape with river network. From [BELH05]

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 23

4.6 Preliminary Discussion

 When attempting to compare the techniques discussed in this chapter, it is evident that the

different types of advantages and weaknesses of the algorithms do not allow for simple ranking.

Because the types of projects that require outdoor terrain can vary wildly, much of a tool’s

usefulness depends on whether it is appropriate for a project’s style and requirements. As described

in Section 2.7, offering a designer a wide variety of tools to choose from allows him to pick the best

tool for the job, as long as the toolset is consistent and intuitive. Therefore, expensive (i.e. compute

intensive) specialized methods may still have a limited area where these methods are preferred over

a method that is generally both better and faster. Supporting a limited number of more expensive

methods might therefore be beneficial to the designer. This makes it difficult to compare these

algorithms quantitatively.

 However, offering all possible algorithms and options to a designer is generally a bad

methodology. This would clutter the interface to the user while offering too many overlapping

functionality. As a preliminary conclusion, noise synthesis seems to be the best general fractal

technique because of its speed, results and flexibility. This is not to say that other techniques are

irrelevant as some might be offered in addition. Below, noise synthesis is compared to the other

techniques using a number of different criteria.

 The complexity of noise synthesis when using a lattice noise basis function is O(n2), which (in its

limit) is constant with respect to the number of vertices in a square heightfield. The constant

depends on the number of detail levels calculated. Perlin noise, the basis function that is most used,

can be evaluated without requiring explicit information from distant vertices (midpoint

displacement) or other random features (Poisson faulting). This last property has the advantage of

allowing (practically) infinite seamless growing of the covered area of a heightfield. This is very

helpful if it is later decided that a heightfield should be larger than initially anticipated or a domain

mapping distorts an area such that height information that would otherwise lie outside the

evaluated area is now visible. Another advantageous property of noise synthesis is the flexibility to

evaluate areas of arbitrary shape and size. All techniques other than noise synthesis and Poisson

faulting work best when (or even require that) a square of a power-of-two size is evaluated. Noise

basis functions are described in more detail in Chapter 5.

 Parallelism is another important factor and is related to the possibility of evaluating samples

independent of values of distant vertices. Recent desktop PCs have a graphical processing unit

(GPU) powerful enough to be used as a general-purpose parallel SIMD-like data processor. All above

fractal synthesis techniques can be implemented to execute on the GPU to benefit from this

parallelism. But the attainable speed-up would heavily depend on the complexity of the specific

algorithm and the dependency between the required data structures. Because the execution speed

of terrain generation and editing tools is critical in the design loop, as explained in Section 2.2, it is

important to be able to use the extra processing power offered by GPUs efficiently. Typically used

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 24

noise functions (e.g. Perlin noise, Section 5.2) can be evaluated completely independent of distant

sample read-backs and has few data dependency relations. Therefore, this noise function will

benefit greatly from this parallelism. Likewise, midpoint displacement might benefit from

hierarchical execution on the GPU using intermediate heightfield ‘textures’, doubling in size at each

subdivision level. However, midpoint displacement is only efficient if (and only if) a full evaluation of

a square heightfield is calculated. Estimating the speedup that can be attained through the use of a

GPU for the different algorithm is difficult, because no papers or terrain generating applications

were found that use the (full) capabilities of the GPU. But because noise synthesis (or, more

specifically, Perlin noise construction) has been shown to execute efficiently on the GPU, it is safe to

say that none of these other approaches would gain preference over noise synthesis.

 Other building blocks that can be used for noise synthesis, like Voronoi noise, are more expensive

to evaluate and might therefore be less applicable in a general sense. But, offering other noise

building blocks in a toolkit offers the designer the freedom to choose whether or not to use it. This

fits nicely with the idea of offering different modular building blocks, function mapping and

cascading options to let designers compile their own heightfields and reusable functions. When the

interface of this modular design is made to be as consistent and transparent as possible, this idea

becomes both powerful and intuitive. Because noise synthesis is very flexible and powerful, other

fractal synthesis techniques like Poisson faulting, Fourier synthesis and midpoint displacement may

not need to be incorporated in a toolset.

 By separating erosion from the creation of procedural terrain algorithms, and allowing erosion to

be used as a post-processing step as discussed on page 21, erosion can be applied to any terrain.

However, erosion techniques that do not adapt a separately created procedural terrain, but create

the whole terrain in one step like discussed in [CHIB98], are relatively inflexible and generally not

worth considering. See Section 7.3 for a discussion of different post-processing erosion algorithms.

 Non-fractal techniques like discussed in Section 4.5 might also be made available to designers.

However, the two algorithms presented in that section are of limited quality. The first creates a

good looking network of rivers but is not very good in creating natural terrain details. The second

algorithm suffers from the same directional artifacts as regular midpoint displacement. However, for

the creation of terrain types with a lot of rivers, they might still be the preferred choice.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 25

5 Noise Basis Functions
 As described in Section 4.3, generating procedural content through noise synthesis is

accomplished by adding band-limited noise functions. Varying the added frequencies (scales) and

the characteristics of the noise function will have a large impact on the result. For this reason,

different noise functions have been developed as basis functions, almost like building blocks, for

the construction of procedural content. For a synthesized result of a specific power spectrum (e.g.

fBm surfaces), the ideal noise function would produce narrowly band-limited, stationary (translation

invariant) and isotropic (rotation invariant) noise. But as a building block for artistic or natural

effects, other ‘noise’ types might be preferred in order to achieve a desired look. This chapter

discusses different noise basis functions for use in noise synthesis-based terrain generation.

5.1 Fourier Synthesis

 Fourier synthesis was already discussed in the previous chapter, but separating it in multiple band-

limited noise building blocks allows it to be used for noise synthesis, adding to its flexibility. Band-

limited noise is easy to define in the frequency domain. The amplitudes of the frequencies are

randomly chosen using a probability distribution of the desired band-limited power spectrum.

Then, an inverse Fourier transform is performed to get the random noise in the spatial domain using

either DFT (Discrete Fourier Transform) or FFT (Fast Fourier Transform) [COOL69]. FFT can be more

efficient than DFT when a large ‘patch’ of noise evaluations is needed all at once (explicit

construction). When only single samples are needed, DFT is preferred (implicit evaluation) [EBER03,

p. 49]. However, calculating a FFT or DFT is relatively compute intensive, making Fourier synthesis

less practical than alternatives.

5.2 Lattice Noise

 Lattice noise functions assign uniformly distributed (pseudo)random numbers at every point in

space whose coordinates are integers, creating a regular lattice of random numbers. An

interpolation scheme that uses the assigned random numbers of nearby neighbors at integer

coordinates is applied to calculate the output value for an input coordinate. The interpolation

scheme has the effect of a low-pass filter. And because the highest frequency of lattice noise is

limited by the lattice density, lattice noise is band limited.

 Depending on the application’s requirements, the random numbers assigned to every integer

coordinate can either be precalculated and stored explicitly, or evaluated at request by hashing the

integer coordinate to retrieve a random number. For the hashing technique, two 1D lookup tables

are used. The H table is a precalculated random permutation of the set of all integers in the input

domain of size n (typically a power of two). The V table is also of size n and contains random

numbers in the range [-1, 1]. Then, a pseudo random value can be calculated by evaluating V(H((x +

H(y)) mod n)) in the case of a 2D integer coordinate [PERL85].

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 26

Perlin Gradient Lattice Noise

 Perlin noise is perhaps the most well known noise type, introduced in [PERL85]. Here, the random

numbers at the integer coordinates do not represent the points through the noise function, but

rather, gradients at these points. The returned value at all integer coordinates is per definition zero.

All non-integer coordinates are calculated by interpolating between the gradients of the 2d closest

neighbors at the integer coordinates, with d being the dimension of the coordinate space (two in

the case of heightfields). For gradient noise, the V table contains random gradients which are

random vectors uniformly distributed on the d-dimensional unit (hyper)sphere.

 Perlin originally proposed using a linear interpolator [PERL85], but later proposed a cubic [PERL89]

and quintic [PERL02] interpolation spline to achieve C1 respectively C2 continuity. Higher order

interpolation is slightly more compute intensive but, depending on the application, can be worth

the extra effort. See Figure 5.1. See [PERL02] and [PERL04] for a more elaborate discussion. The

power spectrum of gradient noise has little low-frequency power and is dominated by the

frequencies that are near to one-half (on an integer-spaced lattice). In other words, it is fairly well

band-limited.

 Linear interpolation (C0 continuity) Cubic interpolation (C1 continuity) Quintic interpolation (C2 continuity)

FIGURE 5.1 Different gradient noise interpolation schemes

Wiener Value Lattice Noise

 Unlike gradient noise, value noise lets the random numbers assigned to the integer coordinates be

the returned noise values at these points. Non-integer coordinates are calculated using an

interpolation scheme. Like Perlin Noise, linear interpolation would result in visible ‘boxy’ artifacts.

Interpolation in normally implemented using Catmull-Rom splines. This interpolation scheme needs

more samples of the neighboring lattice points (4d neighbors for d-dimensional lattice space) than

gradient lattice noise (2d neighbors). Value lattice noise has more power in the lower frequencies

than gradient noise and is therefore less suitable as a band-limited noise octave. For more

information on the value lattice noise, mixing value noise and gradient noise, and other lattice noise

functions, see [EBER03, p. 67].

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 27

5.3 Sparse Convolution Noise

 Lattice noise can have axis-aligned artifacts. To prevent this, sparse convolution noise first places

randomly distributed impulses [LEWI89]. Then, filtering is applied using a low-pass convolution

kernel. The resulting noise power spectrum can be controlled by the filter kernel and is related to

the kernel’s power spectrum. A common implementation of the filter kernel is a Catmull-Rom spline.

The power spectrum of sparse convolution noise resembles a (scaled) power spectrum of value

lattice noise. Even though convolution noise is of higher quality than lattice noise functions, it is (for

the non-mathematical purpose of terrain generation) not worth the increased computing time.

5.4 Voronoi Diagrams

 Even Voronoi diagrams have been used as band-limited noise functions [WORL96]. Like sparse

convolution noise, the first step in constructing this type of noise is picking random points as a

Poisson process. Then, a sample’s value can be evaluated by calculating the weighted sum of the

distances to the top d closest neighbors. That is,

(,) d d
d

N x y w N R= −∑

with N being the coordinate evaluated, Rd being the random point that is dth-closest to N and wd the

weight for the dth-closest neighbor. See Figure 5.2 for examples of Voronoi noise that are

interpreted as heightfields. Although Voronoi noise isn’t a very good approximation of band-filtered

white noise, its average cell size can be controlled by the random point density. This makes it a

noise building block of band-limited feature scale and, therefore, does have its uses in procedural

(heightfield) noise synthesis. More natural shapes appear when combined (cascaded) with domain

distortion functions. See Figure 4.8.

 w = {1, 0, 0, 0, …} w = {0, 1, 0, 0, …} w = {-1, 1, 0, 0, …}

FIGURE 5.2 Voronoi diagram ‘noise’

 Creating Voronoi noise is relatively compute intensive. However, the shape of its typical features is

not easily approximated using less compute intensive techniques. For this reason, it might still be

appreciated by designers to offer an option for Voronoi noise in a toolbox.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 28

5.5 Preliminary Discussion

 Because Perlin noise is fairly well band limited, has few artifacts and is fast to compute, it is

currently the preferred choice of many applications that allow procedural creation of heightfields or

other types of content (e.g. textures). Also supporting Voronoi noise can be helpful to create ridged

mountains or other sharp-edged smaller features that are difficult to produce with other types of

noise. When both of these techniques are available to designers, they create a sufficiently solid base

to designs terrains with, when combined with the summing, distortion and mapping techniques

discussed in Chapter 4.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 29

6 Heightfields by Example
 This chapter discusses an alternative idea for designers to generate heightfields. Instead of

generating new terrain by tweaking a number of parameters, the designer is enabled to quickly

generate new terrain that is similar to a selected area of already created terrain. A designer would

have to select an example area (the exemplar) and start an algorithm that could synthesize similar,

but not identical, terrain somewhere else (the destination area). See Figure 6.1. This would allow a

designer to reproduce the properties of imported real-world or previously created features, without

tweaking any of parameters that would otherwise be required for procedural tools to approximate

the desired terrain properties. It also makes it possible to create new terrain based on scanned

heightfields (i.e. DEMs) of real terrain. Such a tool would fit nicely between low-level copying tools

and purely parameterized procedural heightfield generation.

 Exemplar input image One possible output image

Analysis and

synthesis

FIGURE 6.1 Texture by example synthesis. From [LEFE05]

 A growing set of 2D image synthesis algorithms that can create new images from exemplar images

has been developed in recent years. As explained in Section 3.1, heightfields have a direct relation

to 2D images. This enables techniques that are aimed at 2D image synthesis to be interpreted as

useful terrain creation techniques. So, using these techniques to synthesize heightfields is a natural

extension. Note that this chapter adopts the 2D image-related terminology and uses the 2D

example images from the original papers. Specifically, the words images and textures are used

interchangeably and denote a 2D matrix of color or grayscale values. A pixel represents a local

element of this matrix at an integer (x, y) coordinate (i.e. column-row pair).

 This chapter only discusses a few of the many algorithms available. The quality of the results

obtained from these algorithms can vary greatly. See Figure 6.2 for a visual comparison of a number

of these algorithms for a scale-like exemplar image. It must be noted that the applicability of these

algorithms depends on the type of texture that needs to be synthesized. Algorithms that work fairly

well for images that contain different types of features which have sharp edges could perform badly

on relatively smooth textures (Figure 6.2, middle row) by creating unwanted seams. Likewise,

algorithms that always create seamless results can create results of less quality for exemplar images

that contained sharp-edged distinct features [ASHI01].

 Terrain is generally smooth and contains only few or no extremely sharp edges. For this reason,

only algorithms that are better at synthesizing seamless and smooth textures were chosen to be

surveyed in this chapter. The first algorithm is one of the oldest texture synthesis algorithms and is

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 30

relatively easy to implement. The two subsequent algorithms describe variants of this algorithm

designed to speed up the synthesis process.

 But before going into the details of these algorithms, Laplacian and Gaussian image pyramids are

explained in Section 6.1. Image pyramids are part of some texture synthesis algorithms and other

so-called multi-resolution algorithms with the purpose of speeding up the algorithm and to be able

to cope with features on multiple scales. For example, the multi-resolution blending technique that

will be discussed in Section 7.4.2 uses multiple pyramids to blend different heightfields together.

a) Exemplar input image b) Heeger and Bergen [HEEG95].

From [WEI00].

 c) Efros and Leung [EFRO99].

From [WEI00].

d) De Bonet [BONE97].

From [WEI00].

 f) Ashikhmin [ASHI01].

From [ASHI01].

 e) Zelinka and Garland [ZELI02].

From [ZELI02].

g) Wei and Levoy [WEI00].

From [WEI00].

 h) Nealen and Alexa [NEAL03].

From [NEAL03].

 i) Lefebvre and Hoppe [LEFE05]

From [LEFE05].

FIGURE 6.2 The topleft image is the exemplar image used to synthesize all other images shown. The other two images on the top row show the
result of algorithms that do not correctly copy the structure of this exemplar. The images on the middle row are created by algorithms that
produce visible seams. The bottom row shows the result of algorithms that produce perceptually similar textures without visible seams

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 31

6.1 Image Pyramids

 Comparing different image areas for the amount of similarity is part of all texture-by-example

synthesis algorithms. But many images, including 2D heightfield images, have features on varying

scales and, therefore, need different window sizes to use for their local similarity measurements.

One way to detect all features is to use small, as well as medium and large windows for these

measurements. But processing large windows is very compute intensive. Image pyramids [ADEL84]

are used often instead. The idea of an image pyramid is not to scale the actual window size of an

operation in order to be able to cover different scales, but rather to downscale the input image to

multiple power-of-two scales and use these as inputs to an operator that uses a fixed-sized window

instead. This idea is the basis for many multi-resolution algorithms.

 The image pyramid assumes an input image of size 2n x 2n and constructs a pyramid of n+1 levels

with a 2l x 2l image at level l, 0 ≤ l ≤ n. The image at level n is the original image. An image at level l

can be constructed by downscaling (reducing) the image at level l+1 by a factor of two. A filter with

a (small) fixed-sized low-pass kernel is convolved before every resolution reduction. This filter filters

out all frequencies higher than half the sampling rate, as required by the Nyquist-Shannon sampling

theorem, to prevent aliasing. Often, a small 5 x 5 kernel is used as an approximation to a 2D

Gaussian kernel. For a faster, less accurate, implementation, a 2 x 2 averaging kernel is sometimes

used. In effect, the different pyramid images can be seen as (scaled) approximations of low-pass

Gaussian filtered images with successively doubled radii. For this reason, this type of pyramid is

called the Gaussian image pyramid. The construction procedure is depicted in the top half of Figure

6.3. See Figure 6.7 for an example of a Gaussian pyramid.

 The images in the Gaussian pyramid are low-pass filtered images. However, the Gaussian pyramid

can be processed further to create a band-pass filtered pyramid of images. This band-limited

pyramid approximates the Laplacian of Gaussian (LoG), or simply the Laplacian, at different

(successively doubling) scales, creating a decomposition into wavelets. The level 0 of the Laplacian

pyramid is equal to level 0 of the Gaussian pyramid. The kth Laplacian layer, 1 ≤ k ≤ n, can be

constructed by subtracting the (k – 1)th Gaussian layer from the Gaussian kth layer, after up-scaling

(expanding) the (k – 1)th Gaussian layer to 2k x 2k. The interpolation scheme used for expanding can

be chosen freely. Construction of the Laplacian pyramid from the Gaussian pyramid is shown in the

bottom half of Figure 6.3. Note that the Laplacian pyramid allows lossless reconstruction of the

original input image using n cascaded expand-and-sum operations, effectively summing over all

Laplacian levels that are recursively rescaled to n x n.

 The Laplacian pyramid is not used in this chapter, but it is used in many other computer graphics

fields like data compression and multi-resolution editing. Multi-resolution editing of heightfields is

discussed in Section 7.4.2.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 32

Input image:
2n x 2n

Input image:
2n x 2n

Input image:
2n x 2n

Gaussian
kernel:
k x k

reduce
1:2

reduce
1:2

Gaussian
kernel:
k x k

Input image:
2n x 2n

reduce
1:2

Input image:
2n x 2n

Input image:
2n x 2n

Gaussian
pyramid
level 1:
21 x 21

Gaussian
pyramid
level 0:
20 x 20

Gaussian
pyramid
level n:
2n x 2n

Gaussian
kernel:
k x k

reduce
1:2

Input image:
2n x 2n

Gaussian
pyramid
level n-2:
2n-2 x 2n-2

Gaussian
pyramid
level n-1:
2n-1 x 2n-1

expand
2:1

expand
2:1

expand
2:1

expand
2:1

-

Gaussian
kernel:
k x k

Input image:
2n x 2n

Input image:
2n x 2n

Input image:
2n x 2n

Input image:
2n x 2n

Laplacian
pyramid
level 1:
21 x 21

Laplacian
pyramid
level 0:
20 x 20

Input image:
2n x 2n

Laplacian
pyramid
level n-2:
2n-2 x 2n-2

Laplacian
pyramid
level n-1:
2n-1 x 2n-1

Laplacian
pyramid
level n:
2n x 2n

- - -

G
A

U
S

S
IA

N
 P

Y
R

AM
ID

LA
P

LA
C

IA
N

 P
Y

R
A

M
ID

FIGURE 6.3 Construction of the Gaussian and Laplacian image pyramid

6.2 Explicit Neighborhood Window Texture Synthesis

 Returning to the topic of texture synthesis, a relatively intuitive and simple algorithm was

introduced by Efros et al. that grows a new texture pixel by pixel [EFRO99]. This work models a

texture as a Markov Random Field (MRF). Consequently, every pixel value depends statistically on

the values of the neighboring pixels for a given neighborhood size. A neighborhood is defined as

square window centered around its input pixel coordinate. This relation is strict in the sense that a

pixel’s value is assumed to be independent of values of all pixels outside the neighborhood. Hence,

the neighborhood window size is required to be of a size similar to an image’s features in order to

effectively detect and reproduce its features and structure. Too small, and the structure is lost. Too

large, and the synthesized textures contains features that might be too structured. See Figure 6.4.

FIGURE 6.4 From left to right: The exemplar and four synthesized textures with a neighborhood window of 5, 11, 15 and 23 pixels wide,

respectively. From [EFRO99]

 To determine the value of the pixel at each coordinate p in the destination area D, the exemplar E

is exhaustively searched for close matches of exemplar neighborhoods we(s) with the destination

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 33

pixel’s neighborhood wd(p). The amount of similarity between the pixels of two neighborhoods is

measured by a similarity distance measure d. These neighborhoods are defined as square windows

centered around a coordinate. There is no guarantee that a perfect match will be found (i.e. d = 0),

because D might start off with areas already partly defined and, also, the algorithm introduces

variations itself. A close match is defined as a pair of some s and some p with d(we(s), wd(p)) < (1 + ε) ·

dmin, with dmin
 being the smallest similarity distance found between wd(p) and all we(s). See Figure 6.5.

Ω(s) is the set of coordinates in E that have a closely matching neighborhood when compared to

wd(p). Or, in mathematical notation:

min

min

() min(((), ()))

() { | ((), ()) (1) ()}

d es

d e

d p d w p w s

p s d w p w s d pε

=

Ω = < + ⋅

 ε controls the maximum allowable quality of the elements in Ω(p),

relative to the best match. Consequently, the set size of Ω(p) will

grow with larger values of ε. A larger Ω(p) set creates less exact but

more varying textures. A value of 0.1 is chosen for ε in [EFRO99].

 The set Ω(p) contains coordinates of pixels in S that have a

neighborhood that closely matches the neighborhood of D’s p.

Hence, the (color) value at p is best set to one of the colors at the

pixel coordinates in Ω(p). A histogram of pixel values is created

from the pixel values at the Ω(p) coordinates. This histogram is then

sampled uniformly or weighted by d to choose the value at p.

 The similarity distance measure is taken to be a weighted sum of

squared differences between all filled-in individual pixels of wd(p)

and we(s) for some p and s. Pixels in a neighborhood that are not filled in yet are not considered in

the distance measure. The weights are picked to resemble a 2D Gaussian kernel, centered around

the neighborhood window’s center, to give differences between neighboring pixels near the center

pixel more weight. Consequently, differences in local structures take precedence over distant

structures.

 The coordinate p is picked at each iteration from the set of all pixels in D that are not yet filled in.

The coordinate p from this set that has the most pixels in its neighborhood in D filled in is selected

to be filled in next. In effect, the texture is grown outward from areas that are already filled in. As an

initialization step, a random pixel can be copied from E to D to function as a growing seed if D was

initially completely empty.

 The main advantage of this algorithm is its algorithmic simplicity and the decent quality of its

results. Its main disadvantage is the time required to synthesize a new image, possibly taking

several minutes to synthesize an image of a typical size (e.g. 256 x 256). It is most appropriate for

FIGURE 6.5 Nine neighborhoods in E
(bottom) that closely match the 9x9

neighborhood in D (top)

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 34

textures that contain regularly sized features because of its fixed neighborhood window size. In

some cases, this algorithm is known to grow garbage (areas of different structures, e.g. noise). Also,

the quality of the result depends on the exact sequence of picked p coordinates. This is especially

true when the algorithm is used to fill gaps in D instead of filling D completely.

6.3 Multi-resolution Texture Synthesis

 In [WEI00], several improvements to the previous algorithm are suggested in order to speed up

texture synthesis. For one, it applies multi-resolution techniques to improve the image quality and

to be independent of a user-selected neighborhood window size parameter. But first, differences in

the traversal order and shape of the neighborhood window shape are discussed.

 In contrast to the algorithm discussed in Section 6.2, this algorithm traverses all coordinates p in D

using a fixed raster scan ordering traversal to synthesize D. Consequently, it can only be used to fill

D completely, not to fill gaps in a partly filled D. D is treated to be toroidal, creating a texture that

matches its opposite sides. This allows neighborhoods to ‘wrap around’ when pixels outside the

boundary are needed. To create a random texture, the two rightmost columns and the two

bottommost rows are pre-filled with noise to be used for the neighborhood matching at its

opposite sides. Hence, by using an L-shaped 5 x 2½ neighborhood window, only these noise pixels

and all already synthesized pixels will be used during similarity comparisons. See Figure 6.6. This

change makes traversal and similarly comparison simpler without degrading then quality, when

compared to a 5 x 5 implementation of [EFRO99].

FIGURE 6.6 From left to right: The 5 x 2½ L-neighborhood and the synthesized result at the first, the middle and the last iteration of the

algorithm. Note that the red mask uses wrap around to look up a pixel at the opposite side when such a neighborhood’s pixel lies outside the
image (left image). This wrap around is not visualized here. From [EFRO99]

 While the previous algorithm uses a single user-defined neighborhood size, [WEI00] uses a

precalculated Gaussian pyramid of E to synthesize a pyramid of D. During construction,

neighborhoods in E and D are compared on multiple pyramid resolution levels simultaniously. As a

result, features of all sizes are automatically detected. Starting with the lowest resolution image in

the pyramid, the single-resolution synthesis process is applied similar to [EFRO99] in Section 6.2,

now using the raster scan traversal and the L-neighborhood. The used distance measure simply

compares the neighborhoods at that first level for both E and D. Because this level is a downscaled

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 35

version of the higher levels, the 5 x 2½ neighborhood would cover a much larger area on the

original level, detecting much larger features.

 Next, the subsequent higher-resolution layers in the

pyramid are synthesized layer by layer, from coarse to fine.

But instead of only using the 5 x 2½ neighborhood window

at coordinates s and p at each of these levels, the similarity

neighborhood is extended further with a 3 x 3 neighborhood

window at each of the previously calculated coarser, lower-

resolution levels, accumulating their similarity distances. See

Figure 6.7. The s and p coordinates for the current layer are

halved at each subsequent layer to compensate for the

resolution reduction. The lower-resolution levels with the

fixed 3 x 3 neighborhood windows relatively cover

increasingly large window areas when going from the currently synthesized image layer to the top

most (coarse) layer. Together, these enforce a close match between the neighborhoods at s and p at

different neighborhood scales.

 The Cartesian product of all pixel values in a neighborhood can be interpreted as a vector in a

high-dimensional domain. This allows each possible neighborhood in D or E to be seen as a point in

this domain. Then, finding the closest match is equivalent to searching the nearest point in this

high-dimensional domain. Several search algorithms are available that would speed up such a

search. Tree-structured vector quantization (TSVQ) is suggested in [WEI00]. This creates a binary-

tree-structured codebook that is trained on the exemplar’s neighborhood vectors and allows very

efficient traversal to search the approximately closest match to a vector from D. The size of the

codebook can freely be chosen and is a tradeoff between traversal efficiency, accuracy and memory

requirements. Without the TSVQ acceleration, the algorithm described in this section is about 4

times faster than the algorithm proposed in [EFRO99]. With TSVQ acceleration, it is about two

magnitudes faster than [EFRO99] and has O(log N) / O(N) times the algorithmic complexity, where N

is the total number of exemplar pixels.

6.4 Parallel Controllable Texture Synthesis

 Pixel-based texture synthesis is very data intensive and fairly simple to implement. This would

make it ideal for parallel execution on a powerful GPU. However, the algorithms above have the

drawback of requiring sequential construction, as the output of one iteration serves as input to the

next. In [LEFE05] a texture synthesis algorithm is described that does allow highly parallel

execution.

FIGURE 6.7 Neighborhoods used for the

calculation of the last pixel in layer 4 of a full
Gaussian pyramid

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 36

 Like [WEI00], it uses multi-resolution levels of the image to work on different scales using a

variation of the Gaussian pyramid, called the Gaussian stack. From the lowest-frequency level up, it

calculates the next level of D in three phases, level by level. First, the previous level is sampled up in

order to double its resolution. Secondly, the up-sampled information is jittered to introduce

variation. Lastly, the level is iteratively corrected to recreate neighborhoods similar to those found in

E.

 But these steps are not executed on pixel color information in D. Instead, another pyramid S is

used. S contains coordinates that point to pixels in the exemplar E. This allows D to be constructed

from S by calculating E[S]. The advantage of working on a separate coordinate map is that this

allows upsampling and jittering coordinates from a lower (coordinate) level, while full-spectrum

non-degraded image detail can still be looked up. The 2D coordinates in S can be encoded as colors

for visualization and fast GPU processing, using the red and green components as X and Y values,

respectively. See Figure 6.8.

FIGURE 6.8 The three phases of construction of the next layer. The images on the top row are coordinate maps. From [LEFE05]

 In the upsampling phase, Si+1 is simply calculated from Si by doubling and interpolating the

coordinate values in Si. The jittering phase introduces randomness by perturbing Si+1 using a

deterministic pseudo-random hash function (e.g. Perlin noise). Note that the amount of

perturbation can be varied per layer, allowing for fine control over the exact type of variation. Also,

when the jittering phase is left out, the synthesized image will closely match E or even consists of a

(multiple of) exact copies of E, depending on whether E is toroidal. See Figure 6.9.

FIGURE 6.9 Synthesizing three versions of D of twice the width and height of E (the gray image). From left to right: No perturbation, perturbation

at the higher (finer) levels and perturbation at the lower (coarser) levels of the image pyramid S. From [LEFE05]

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 37

 These first two phases can be implemented easily and efficiently

on parallel architectures. The last phase contains the actual

neighborhood matching part for all pixels, which contains many

dependencies. Previous algorithms solved this by calculating and

updating it sequentially for the different pixels. The algorithm in

[LEFE05] introduces an iterative subpass approach that allows

highly parallel execution. Each subpass updates an interleaved

subset of Si by searching for 5 x 5 neighborhoods in E that closely match the neighborhoods in E[S]

for the pixels in the current subset of S. See Figure 6.10. To do the neighborhood matching

efficiently, the exemplar is preprocessed (e.g. TSVQ) to allow a fast lookup of closely matching

neighborhoods for all pyramid levels of E. In total, k2
 subpasses are used, each responsible for a

regular, interleaved subset of S of non-(von Neumann) neighboring pixels, with typically k = 2 or 3.

The partition into subpasses allows neighboring pixels in S to be causally dependent on the result of

previous subpasses, while the update of non-neighboring pixels is executed in parallel at each

subpass. In practice, results from this approach are often better and more isotropic than completely

sequential approaches because there is no single explicit sequential construction order. When

required, the quality can be further improved by applying the correction phase multiple times.

 A unique and useful control supported by this algorithm is feature drag-and-drop. By letting the

user influence the perturbations in the jitter phase, random variation can be locally replaced by

exact placement of a feature found in E. For example, a mountain top in Figure 6.9 can be relocated

from one position to another. To support this, yet another image pyramid can be used to look up

the local perturbation. This image pyramid would initially be filled with random values, but can be

replaced locally with specific coherent values, forcing a lookup for D from the desired area in E. And

because the correction phase is still applied to S, the result remains seamless. However, this control

is limited to spatially distant adjustments as earlier adjusted pixels in the perturbation image would

otherwise be overwritten by the latest change.

 The exact speedup accomplished by this algorithm depends on many factors. But as a rough

estimation, the algorithm can be said to be about three magnitudes faster than [WEI00] for typical

sizes (128 x 128 and 256 x 256) when executed on GPUs from around 2005. Synthesizing a 256 x 256

image takes about 25 ms.

FIGURE 6.10 The interleaved update
pattern of 22 correction subpasses.

From [LEFE05]

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 38

6.5 Preliminary Discussion

 For this literature study report, it was not possible to run different algorithms on terrain

heightfields to compare the quality of their results. Having such a comparison would make

choosing between algorithms much easier. However, there is good reason to assume that the last

two algorithms described above would produce heightfields of fairly good quality. Not only do they

produce good results for smooth features, they also search for matching features in the exemplar at

multiple scales. Both properties are expected to be needed for good terrain synthesis. The first

property is important because terrains are, on average, locally fairly smooth and contain few or no

really sharp ridges. The latter property is important because terrain is generally fractal, having

features on all scales.

 The three algorithms discussed in this chapter were ordered to be increasing both in algorithmic

complexity and in synthesis speed. The last algorithm uses the parallel processing capabilities of the

GPU to speed up synthesis. Whereas the first algorithm could take up to several minutes to

complete the synthesis of an image, the third algorithm does this in a fraction of a second. This

makes the third algorithm the only algorithm that could be used as an interactive tool for a level

designer on today’s hardware.

 It is expected that a tool that would allow a designer to copy properties of an exemplar area into a

destination area of arbitrary shape and size would be very useful. However, the second and third

algorithms discussed in this chapter are only capable of synthesizing a rectangular patch, without

considering the neighboring terrain at the patch’s boundary. Blending techniques discussed in

Section 7.4 can be used to blend new terrain into already existing terrain. However, it might be

possible to extend these algorithms to directly support natural transitions between existing and

synthesized areas. More research and experiments would be required to verify this statement.

 As a last note, the distance measure used by these algorithms was chosen for its usefulness for

synthesizing 2D images but might prove to be suboptimal for heightfields. For example, it might be

found that the derivative of the height in a heightfield might be more important than the (small)

perceptual importance of the derivative in a 2D image. Most algorithms use the squared error

measure for the neighborhood comparison, but this often can easily be replaced by other measures.

It would require some experimentation to verify that other measures might improve the perceptual

quality of synthesized terrains.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 39

7 Terrain Geometry Editing
 Chapters 4 through 6 discuss the procedural synthesis of new terrain. Some of the currently

available level edit tools already allow some form of procedural terrain synthesis. Having such a tool

helps a designer to create a rough outline of the whole terrain required for a game level. However,

these tools only offer global, high-level parameters, making it hard to control exact placement of

different desired landscape features (e.g. mountains and lakes) throughout the landscape. Even if

one feature (e.g. a mountain) is generated to the liking of the designer by tweaking procedural

parameters, it is very unlikely that all other simultaneously generated features in that generated

landscape are more or less exactly as planned. Therefore, when a designer requires somewhat exact

placement of specific features at specific locations he has no other choice than to use the only other

set of tools that is typically available to further sculpt the procedurally generated rough outline. This

alternative set of tools typically allow for low-level operations that only make simple local

adjustments to the heightfield. Examples of these low-level tools are mouse-controlled local vertical

heightfield pushing, pulling and leveling operations that operate at a specified location within a

specified radius. However, once manual changes have been made to a terrain, the high-level

synthesis tools are no longer of use; applying synthesis algorithms would otherwise overwrite all

manual changes.

 Low-level operations can be ideal when only small changes are needed. And indeed, every type of

terrain can be created with these tools by a good level designer given enough time. But it is clear

that tools that fit somewhere between the high-level procedural terrain synthesis tools and the low-

level local operation tools certainly would find their use in level design.

 For this purpose, four types of editing tools are surveyed in this chapter. First, the terrain editing

tools that are typically the only non-procedural tools available to today’s designers are covered.

Secondly, simple extensions that allow terrain warping in uncommon ways are discussed. Thirdly,

erosion algorithms are introduced in Section 7.3. These complement the other tools by offering the

creation of more physically correct features that can easily be carved out where the designer desires

to. Algorithms that are capable of integrating an area of one terrain into another are discussed in

Section 7.4. Such algorithms make it possible to reuse terrain synthesis tools at later stages of the

level design, as the combinations of these tools can be used to synthesize and blend in terrain in

designated areas of a level that still need work.

7.1 Simple Editing

 Starting with low-level editing, this section gives an overview of the (only) terrain editing tools that

are commonly available in today’s level editor applications. These are typically used inside an

application environment that is able to render a 3D preview of the level at real-time. The mouse is

used to designate the circular area a tool should work on. Typically, a tool radius can be chosen to

vary the size of the selected area. Other options include the tool strength (e.g. amount of change

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 40

per time unit) and the shape of any strength falloff towards the boundary of the circular area. Then,

the terrain is edited by repeatedly changing the editing tool type and its options and then ‘painting’

or ‘brushing’ with these tools by dragging the mouse. Of course, mouse simulating hardware like

drawing tablets can transparently be used instead if preferred. Typical tool brushes are:

Vertical push and pull These two tools simply slowly decrease and increase the height

 values that are currently under the selected circular area, respectively.

Smoothing A simple low-pass filter is slowly applied to the height values inside the

 the selected area over time. Smoothing can be used to smooth out areas

 that are too rough.

Leveling This drag tool sets all height values inside the (dragged) selected area to

 the height value that lied at the center of the selected area when the tool

 was activated (e.g. the left mouse button was first pressed). This is

 typically used to level (i.e. bulldoze) streets and the areas surrounding

 buildings.

Contrasting An (unsharp mask) sharpening filter is slowly applied to the selected area

 over time. As the opposite of smoothing, it can be used to roughen

 areas.

Noising Small random displacements are added to all height values inside the

 selected area over time. This is typically used to introduce some

 variation into terrain.

 Like applying simple painting strokes, these tools can be used to create any type of terrain that is

required. But of course, it takes skills to use these tools effectively. Also, creating levels this way is

very time consuming. Nevertheless, this is all that is offered by most level editors.

7.2 Warping Tools

 As discussed in Section 4.3, domain and range mapping support stretching and warping of

landscape features. Examples of range mapping are simple glacial-like and canyon-like range

adjustments. Domain mapping allows irregular and naturally flowing horizontal warping when

coupled to a (Perlin) noise distortion field. These techniques could be offered as editing tools to the

designer to simplify the creation of certain types of features, or simply to move a feature

horizontally or vertically. Like the other proposed editing tools, a brush with a user-defined radius

and falloff curve could be offered as a local interactive tool, adjusting the terrain while brushing

with simple mouse strokes. The amount and variation of distortion could be made adjustable

through the use of sliders and presets or could be coupled to a (cascaded) noise source.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 41

 Two different methods can be used for many of these brushes. The first is straightforward and

consists of direct editing of the selected heightfield. The second is indirect editing, where the

designer can paint an (invisible) mask field specifying the local strength of a tool’s effect, similar to

an alpha mask. Then, this mask field is used to locally (re)apply any of the operations discussed

throughout this chapter to create a separate output heightfield. This has the advantage of

supporting a simple effect eraser brush where the effect mask can locally be cleared with. Another

advantage is mask scaling, globally amplifying or fading away the effect. Also, more advanced, non-

linear techniques could use this mask to reapply the operation to the complete input instead of

reacting to the latest change. Results created this way would be independent of the exact sequence

of brush strokes.

 When this idea of indirect editing is generalized, heightfield operations can be seen as a flow

graph of operation and data nodes (e.g. blend nodes, file inputs, procedural heightfields and

painted mask layers). Although this is a powerful paradigm, it is also difficult to implement

efficiently in terms of memory and computational power, as explained in Section 2.5. It is especially

difficult to do so when an operation requires multiple heightfield inputs. By allowing the designer

to choose between direct editing and indirect editing through the use of mask layers, it is left up to

the designer to choose the type that is most appropriate. Direct editing is fast and is less flexible.

Indirect editing is more memory intensive and compute intensive, especially when many layers are

used during editing. Collapsing a layer (i.e. applying the operator using the mask field, explicitly

storing the result as a new heightfield and deleting the mask field and any other input fields) after

being done with it might keep indirect editing workable at interactive speeds.

 Because range and domain mapping derive a new heightfield from an original heightfield, it is

expected that any direct feedback loop of the effects into the same heightfield by editing this

heightfield will render these tools possibly less useful. For example, keeping your brush too long at

the same location while using direct domain warping will result in a fully horizontally smeared

patch under your brush, loosing all detail due to the repeated use. In contrast, by using a layered,

indirect version, all original detail is maintained, as it effectively is a perturbed lookup into the

original unaltered heightfield. And again, when the designer is content, the layer could be finalized

and collapsed to preserve memory and improve performance.

7.3 Erosion Tools

 Although the tools that are described above are very simple, the concept of brushing to edit

terrain is not necessarily too primitive to be efficient for a designer. When the set of brush tools is

extended to include more powerful and natural effects, this intuitive interface allows creation of

more natural effects in less time. In this subsection, different terrain erosion brushes are suggested

to simplify the creation of geological phenomena that would otherwise be laborious to achieve.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 42

 These brushes use simplified models of geological laws

and observations to simulate different aspects of the

real-world ongoing process of terrain erosion. Because it

is essential to have tools working at interactive rates, as

discussed in Section 2.6, many of the simulations

mentioned in this subsection are only simple

approximations of the actual geological processes. But

nevertheless, impressive results can be created quickly

with these algorithms.

 Note that the algorithms discussed here were originally

proposed as operations that are applied to the whole

heightfield as an additional phase in the construction of

procedural heightfields, as discussed in Section 4.4. But

these algorithms are easily adapted to allow them to be

applied only locally.

 The erosion algorithms can be divided into two

categories. The first simulates thermal erosion. This is

the geological term used for the process of rock

crumbling due to temperature changes, and the piling

up of fallen crumbled rock at the bottom of an incline. The second type of erosion discussed is

fluvial erosion. This type of erosion is caused by running water (e.g. rain) that dissolves, transports

and deposits sediment on its path. See Figure 7.1.

7.3.1 Thermal Erosion

 Thermal erosion, or thermal weathering, is the computationally least intensive type of erosion.

However, the results created with this type of erosion are also less interesting. It simulates the

process of loosening substrate which falls down and piles up at the base of an incline. This process

is responsible for the creation of talus slopes at the

base of mountains.

 A simple thermal erosion algorithm is proposed in

[MUSG89]. There, the heightfield is scanned for

differences between neighboring height values that

are larger than a threshold T. When found, the higher of

the two neighbors deposits some material to the lower

neighbor. If a height value has multiple lower

neighbors, it distributes the deposition according to

FIGURE 7.1 Different types of erosion. From top to
bottom: unaltered procedural heightfield, thermal

erosion and fluvial erosion.

FIGURE 7.2 Thermal erosion deposition with c = 0.5, T =

0. From [BENE01b]

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 43

the relative differences. The amount of material deposited is a fraction c times the height difference

between the neighbors minus T. See Figure 7.2. In effect, a maximal slope is enforced after enough

iterations are executed.

 The whole heightfield is updated at each iteration for these types of algorithms. Typically, the

height values are read from the heightfield from the previous iteration, processed independently

and stored to the new heightfield. As causal dependencies of interactions between values are not

solved for but set independently for each height value instead, fluctuations in total mass and

oscillatory heights can occur. But when the fraction c of deposited material is chosen small enough

(e.g. 0.5), these effects will be sufficiently damped and barely noticeable. The advantage of such an

implementation is that it allows parallel execution of all height updates within one iteration.

 FIGURE 7.3 Before (left) and after (right) erosion was applied to the letter W consisting of a hard material and a layer of soft
material on top.

 A layered representation of heightfields was presented in

[BENE01a] in order to cope with a different rock hardness at

different earth layers. This allows different erosion rates at

different locations and at different depths. The layers are

represented as the relative height of different stacked material

layers in a vertical geological core sample from the surface

down to an absolute zero height. See Figure 7.4. Therefore, the

height at the surface is the sum of the different layer lengths.

Erosion is only applied to the surface, using the erosion

parameters of the top layer. After this layer has locally been

worn away, the next layer is exposed and so on. This can result

in more varied results when the layers have been defined

usefully. The experiment shown in Figure 7.3 shows a result that would be difficult to achieve with

non-layered erosion.

7.3.2 Fluvial Erosion

 Fluvial erosion, or hydraulic erosion, involves depositing water that can dissolve, transport and

deposit suspended material on its way downhill. Examples of its effects are gullies and alluvial

planes. But also the effects of alpine glacial erosion can be simulated if the right settings are used. A

simulation of such a process is generally computationally more involved than thermal erosion.

FIGURE 7.4 Example of a layered core

sample. From [BENE01a]

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 44

 These erosion algorithms can roughly be divided into two approaches. One is the simulation of

individual water particles using a particle system, eroding the terrain under their individual paths.

Simple physics rules are used to calculate the trajectory as it ‘rolls’ down and picks up and deposits

sediment. The other approach uses a set of additional ‘height’-fields that store the amount of water

and the amount of suspended sediment within each grid cell. Then, a simulation step consists of

updating these fields after locally exchanging the necessary information between neighboring cells.

This type of grid-based local interaction is typical for all cellular automata algorithms.

 A summary of [CHIB98] was already given in Section 4.4, where individual water particles are used

to calculate water quantity, velocity and collision energy data fields which are on their turn used to

update the heightfield. This process is repeated as many times as needed. Although the original

paper used it to create new heightfields, it can be used to adapt a (previously generated) existing

heightfield without any modifications.

 One of the first grid-based fluvial erosion algorithms

can be found in [MUSG89]. Each grid point v in the

heightfield H(v) contains an additional water volume

W(v) and a suspended sediment amount S(v). Initially, a

uniformly distributed amount of water is dropped (i.e.

all of W is set to a non-zero value). When the local

altitude plus the local water level is higher than the

neighboring levels, the difference is transferred to the lower neighbors. See Figure 7.5. Flowing

water will dissolve material and carry this sediment to its lower neighbors, up to a given sediment

capacity constant times the (steepness-dependent) volume of the transferred water. Dissolving

material is implemented by locally increasing the value in S(v) by the same (small amount) as

decreasing H(v). Likewise, depositing material increases H(v) at the cost of S(v). When the local

steepness-dependent sediment transfer capacity is larger than the amount of local sediment, more

sediment is dissolved from H(v) and transferred. Likewise, when the capacity is smaller than the local

amount of dissolved sediment, some of the sediment is deposited back to H(v). Because the

capacity is zero when the water level has reached a (local) equilibrium, all dissolved sediment is

eventually returned to H(v).

 In effect, this process will dissolve material from steep areas where relatively more water will flow

and deposits the dissolved material again at flat areas downhill. As the geometry will force water to

flow down non-uniformly, certain areas will be deepened and smoothed more than average. Areas

that are deeper than their surrounding areas will receive even more water in the next iteration,

amplifying this effect. As a result, distinguishable water streams are sculpted into the original

heightfield. Note that water velocity, impact and evaporation are not considered here. Nonetheless,

impressive result can be obtained with this algorithm given the right parameters and enough

iterations. See Figure 7.1.

FIGURE 7.5 Fluvial erosion water transfer

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 45

 Several variations have been devised. In [BENE02b], water

evaporation is included to limit the distance sediment can travel.

Olsen suggests several tradeoffs between accuracy and speed in

 [OLSE04]. There, only the four neighbors in the von Neumann

neighborhood are considered instead of the original eight

neighbors in the Moore neighborhood. See Figure 7.6. Also,

water is only transported from a high grid cell to its single lowest neighbor instead of being

distribution among all its lower neighbors. Furthermore, it is assumed that water is fully saturated

with sediment at all times and thus no separate S(v) sediment map is required. Although physically

less correct, the results are still visually plausible.

 A more physically correct model has been proposed in [BENE06] by

discretely solving the Navier-Stokes equations to simulate water more

realistically. Sediment transportation equations are added to simulate

erosion. The equations are applied to voxelized (terrain) patches instead

of heightfields to allow for a standard Finite Element Modeling approach

to solve these equations. See Figure 7.7. Although results are impressive,

calculation time currently prohibits its use in interactive applications.

7.4 Terrain Blending

 Another useful type of brush would be a copy brush. This would enable a designer to locally ‘paint’

a terrain from a different source heightfield onto the destination work terrain. Consequently,

procedural techniques might be used in later stages by blending any desired parts of newly

generated terrain into a project. Such a copy brush could be accomplished in different ways,

varying from the simple copy-pasting of all height value within a (circular) brush area, up to

seamless copying and blending of brush areas using more advanced algorithms.

 As discussed in Section 7.2, brushes can be applied by directly modifying the original area or can

be applied indirectly by transparently (re)applying an algorithm to the separately kept original area

while using a brushed influence mask. The latter has the advantage of supporting eraser brushes

(locally clearing the influence mask) and global scaling and tweaking of the effect at any time.

Terrain blending would benefit from this latter approach as it presumably requires iterative

tweaking of the exact blend area and other blend parameters.

 The simplest type of blend would be mere copy-pasting of the selected source terrain into the

destination terrain. One difficulty with this idea would be the resulting seams at the border of the

selected area. Unless the height at the source and the destination area match up at the borders of

the brush(ed) area, a shift in average height will be noticeable. This is generally not desirable as you

FIGURE 7.6 Neighboring cells (grey) of in

the Von Neumann neighborhood (left) and
Moore neighborhood (right)

FIGURE 7.7 Oxbow lake-like
features carved out by water
simulation in a terrain patch.

From [BENE06]

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 46

most likely would like to copy features within the brush areas from the source area to the

destination area, not create new features (i.e. the sudden change in height). The following

subsections discuss different techniques of increasing complexity to blend two heightfields. As with

many algorithms discussed before, these techniques were developed as image editing techniques,

but can transparently be applied to heightfields as well.

7.4.1 Simple Boundary Feathering

 A common technique in image editing is feathering. A soft brush (with a falloff curve towards its

edge) is used to blend in the result. A simple dst’ = lerp(dst, src, mask) (i.e. linear interpolation blend

of src into dst where indicated by mask) can be used to calculate the local height value of the

blended result. Here, mask is a temporary mask field (i.e. a scalar field similar to a heightfield) where

the local value determines the blending strength. It is typically zero for all height values outside the

brush’s radius and is increasing up to one towards the brush’s center. This will limit the hardness of

the brush’s border, but will not completely alleviate the problem, as Figure 7.8 demonstrates for a

synthetic example. In that figure, a ‘mountain’ is created while it might be the designer’s intent only

to locally replace the square wave with the triangular wave where he or she brushed. The problem

here is the large difference in the mean of the source and destination terrain. In this particular case,

one could normalize both the source and destination terrain by subtracting their respective mean

value before blending them and then add the old mean value of the destination again. This can be

seen as separating the terrains into a DC (i.e. zero frequency) component and a non-DC (i.e. all non-

zero frequencies) component, blending the source and destination terrain per component using a

weighted strength mask and calculate the sum of these blended components. This is a special case

of the algorithm discussed next.

 Destination terrain Source terrain Feathered brush strength mask Result blended terrain

FIGURE 7.8 Terrain heightfield cross section

7.4.2 Multi-resolution Blending

 In Section 6.1, Laplacian and Gaussian pyramids are discussed. These two types of pyramids

effectively calculate low-pass-filtered and band-limited octaves of an input image, respectively. In

[BURT83], an image blending technique is introduced that uses these pyramids to blend the source

and destination image differently for different octaves. This is one example of multi-resolution

blending.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 47

This algorithm consists of three steps: decomposition, blending the different components and

recomposition. Decomposition consists of calculating the Laplacian pyramid of both the source and

destination image. Also, the Gaussian pyramid of the mask is calculated. Then, a new Laplacian

pyramid is calculated from these three src, dest and mask pyramids by calculation the independent

result image of a lerp(src, dest, mask) per pyramid layer. Finally, the image result is recomposed by

summing over the different layers of this resulting Laplacian pyramid. Although originally

developed for image mosaicing, it can transparently be applied to heightfields. This blending

process is demonstrated in Figure 7.9 for the synthetic terrain cross section of Figure 7.8.

Destination terrain

Source terrain

Mask

Pyramid

Layer:
Laplacian pyramid: Laplacian pyramid: Gaussian pyramid:

Laplacian pyramid of lerp() results

for each layer:

n

… … …

n - 2

… … …

1

 Result:

FIGURE 7.9 Multi-resolution blending of a terrain heightfield cross section

 This algorithm results in a multi-resolution blend of source and destination where the finest details

are interpolated between source and destination over a short distance when a (non-feathered)

brush is used. Coarser detail is interpolated over a longer distance. In effect, details will be blended

over distances similar to the specific detail size.

 This idea can be made more flexible by introducing a scaling factor per layer of the mask pyramid,

bound between 0 and 1. Choosing relatively lower scaling factors for the lower octaves would result

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 48

in copying less of the lower frequencies of the source image. Likewise, zeroing out the scaling factor

for the highest frequencies would leave the higher frequency features of the destination

unchanged. See Figure 7.10 for these two scaling examples applied to a more realistic heightfield.

 A potential disadvantage of this technique is that the destination heightfield is also adjusted

somewhat outside the masked area as the influence mask is spread out for lower resolutions (i.e.

lower layers) due to the low-pass filtering. In Figure 7.9 this shows as a change of the mean height.

This might or might not be appropriate for different situations. Another approach that only changes

the area inside the mask is discussed next.

Original heightfield

Blend one: High-frequency

Source heightfield 1 Blend strength mask

Result after the first blend, using zero amplitude for the lower octaves. Note

that only high-frequency detail is copied and global features are left
unchanged

Blend two: Low frequency

Source heightfield 2 Blend strength mask

Result after applying the second blend, using zero amplitude for the higher

octaves. Note that only low-frequency features are copied and high-
frequency detail is left unchanged

FIGURE 7.10 Example of two differently weighted multi-resolution blending operations applied to a heightfield.

7.4.3 Poisson Editing

 The more involved method discussed in this subsection solves a linear system of Poisson-based

equations to calculate the best blend of a source area into a destination area. Introduced in

[PÉRE03], a more elaborate discussion can be found there on the theory behind it and its different

applications to color images. Here, only a short summary of the basic discrete result is given.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 49

 The problem of blending source areas into destination areas is most noticeable at the edges of this

area. Feathering (i.e. a brush with a falloff curve) helps to hide this, in effect spreading the boundary

error over a greater distance. The algorithm discussed in the previous subsection applies this over

multiple scales to hide this even further. The method discussed here takes another approach.

Instead of spreading the differences at the boundary over a distance explicitly, the destination area

inside a (brushed) mask area is calculated by solving a quadratic minimization problem in the

images’ gradient domain. The destination area outside the masked area is completely left

untouched. Given are the pixel values at the mask’s boundary edges of the destination area, as well

as the source’s pixel values inside the mask and at the mask’s boundary. For now, a boolean mask is

assumed. From these values, a minimization problem is formulated containing a set of quadratic

equations. As the minima of quadratic equations can be calculated by the use of their (linear)

derivatives, the solution can be found by solving a matrix of linear equations.

 Destination image. The white area was cut
as it is no longer needed and will be fully

replaced by the blend result

Source terrain. Example pattern containing
sharp edges through the use of contrasting

colors

Result blended terrain. Note that results are
a little different than expected from a

boolean mask, as the application used to
create this image also applied some

feathering near the edges

FIGURE 7.11 Poisson blending of two images using a circular mask

The set of equations that needs to be solved can be written as follows:

p p

q p p q p pp
q N q N

D N D S N S
∈Ω

∈ ∈

∀ − ⋅ = − ⋅∑ ∑

 Here, Ω is the set of pixels that are masked and need to be set by the algorithm

(white pixels in leftmost image in Figure 7.11). Sp and Dp are pixels from the

source image and destination image inside Ω, respectively. Np are the valid

pixels inside the von Neumann neighborhood of p, p itself excluded. Hence, |Np|

is 4, except at any border pixels of S and D. See the red cross surrounding a center pixel p inside the

white Ω area in Figure 7.11 for an example for Np. Of course, all Sp and Sq are known. All Dp-s are

unknowns. Likewise, Dq-s are also unknown, except for the neighbors of a p that are at the (outer)

border of Ω. Cases of known Dq-s are marked with a black border in Figure 7.11. Both the lhs (i.e. the

left-hand side) and the rhs (i.e. the right-hand side) of each equation can be interpreted as a 3x3

approximation of the Laplacian operator. See Figure 7.12. Therefore, this set of equations can

FIGURE 7.12 3x3
approximation of the
Laplacian operator

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 50

interpreted as matching the local 2nd derivatives of the result (the lhs) with the local 2nd derivatives

of the source (the rhs) for all pixels that are part of Ω. The Dq-s that are known (the black bordered

squares in Figure 7.11) will bind part of the lhs variables of the equations, resulting in a smooth

transition from the boundary inwards when this linear system is solved.

 Together, these linear equations form a sparse, banded matrix that is best solved using an iterative

solver. Examples of these are Gauss-Seidel solvers with successive overrelaxation or V-cycle

multigrid solvers. Both allow a patch of about 256 x 256 pixels (or, heightfield values) to be blended

at interactive speeds on today’s CPUs. These solvers can also be implemented on the GPU [BOLZ03]

to blend even larger patches at reasonable speeds.

7.5 Preliminary Discussion

 Many different editing techniques have been introduced and proposed in this chapter. All of these

could be offered to the designer by the use of brushes that immediately (should) have effect on the

visible landscape. Simple brush strokes, together with user-editable settings and presets, provide a

recognizable interface to users of Photoshop and other image editing applications.

Offering the possibility to use Photoshop-like effect layers for indirect editing could further enhance

the potential.

 When compared to the limited heightfield editing functionality offered by most of today’s level

editing tools, much can be gained by offering (any subset of) the ideas proposed in this chapter. For

example, blending terrain allows the reuse of procedural techniques in later stages of the design

where medium-sized areas possibly need to be changed. Range and domain mapping might assist

designers in creating natural effects in an efficient way. Also, erosion is a valuable tool that allows

the creation of realistic features that are otherwise hard to accomplish using procedural techniques

and low-level editing. The tools proposed here would all be fairly intuitive as their effect should be

directly visible. Also, the types of parameters are intuitive and could be made consistent, except

perhaps for the different erosion and blend algorithms. It might be considered to support only one

(flexible) type of erosion and blending.

 Erosion could be offered as a single tool, applying erosion globally to create a large patch of a

certain type of terrain, or be applied only locally as a tweaking tool by, for example, ‘brushing’ rain

that erodes the heightfield underneath it. This would offer the designer a tool that fits nicely

somewhere between high-level global procedural generation and low-level local editing. Note that

the speed of an erosion tool, or of any brush tool for that matter, is essential, requiring interactive

rates to allow the designer to intuitively work with a tool. The results from the erosion algorithm

introduced in [BENE02b] (fluvial erosion with water evaporation, Section 7.3.2) are reasonably good

as this algorithm has a good balance between quality and speed and allows efficient execution of

this algorithm on the GPU. Therefore, it is expected that this algorithm will be the best choice for an

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 51

erosion brush. Also, the evaporation will limit the radius of a local rain brush, making it better suited

as a local editing tool. If this algorithm would still prove to be too slow to be effective as an

interactive tool, the simplifications suggested in [OLSE04] could be tried out and be made optional.

 Of the discussed blending tools, multi-resolution blending is probably the most flexible and

‘tweakable’ algorithm. And it is presumably faster than the Poisson editing technique and easier to

implement. Different blending effects can be accomplished by changing the multi-resolution

weights of the tool. Offering only this algorithm as a blending tool is expected to be powerful

enough for designers. But experiments might be needed to verify this, as few designers previously

have had the chance to experiment with blending.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 52

8 Terrain Texture Editing
 So far, the focus of the algorithms covered in this report has been on synthesizing and editing

heightfields. When a heightfield is to be used in a real-time engine, this heightfield will generally be

rendered as a set of polygons. Assigning uniform colors to these polygons will not create very

convincing results when rendered. Photorealistic textures can be assigned instead to increase the

visual resolution of the material the terrain is made of. Typical textures include mud, snow, dirt,

sand, grass and rock. These terrain textures can be created by artists from edited photographs or

might even be generated procedurally. Texture creation is not covered here. Instead, this chapter

shortly discusses different techniques to locally and/or globally create and edit a mapping of

already-made terrain textures to the terrain heightfield.

8.1 Terrain Texturing Methods

 Textures are typically applied to triangles during rendering. To triangulate heightfields, the

heightfield elements are first used to construct a mesh of quadrilaterals (quads). The vertices of this

mesh are spaced regularly when projected on the horizontal plane. The vertical displacement of

each vertex is the height value of an associated heightfield grid element. As efficient rendering

requires triangles, these quads are subdivided further into two triangles. Three common methods of

subdividing quads into triangles are depicted in Figure 8.1, varying in isotropy and control.

Regular triangulation. Twice as much
resolution in one diagonal direction than the

other diagonal direction.

Regular checkerboard-like triangulation.
Both diagonals have identical average

resolution.

Irregular triangulation. User can select the
diagonal per quad, gaining control over

relative diagonal resolution.

FIGURE 8.1 Different quad mesh triangulation techniques for 16 quadrilaterals.

 Different methods can be used to apply texture to heightfield triangles, varying in quality,

flexibility and memory requirements. These techniques are covered below.

Global texture

 The simplest texturing technique is analogous to the idea of heightfields. A single color image is

assigned 1:1 to the whole terrain geometry using a vertical orthographic projection. Obviously, the

disadvantage of this technique is memory usage as using resolutions that result in more than only a

few pixels per triangle are prohibitively memory intensive. It might suffice for flight simulators,

rendering the terrain from a great distance, but looks terrible for applications that show the terrain

from only a few meters above ground. Also, creating a global map can be difficult to do by hand.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 53

However, when the used heightfield is actually a realistic model of real existing terrain, an aerial

photograph might be used instead. See Figure 8.2.

Global texturing Global + detail texturing

FIGURE 8.2 Global texturing with and without detail texturing. Note the visible lack of detail near the camera in the left image.

Detail texture

 A fast and simple improvement of the previous technique is the use of an additional detail texture.

A detail texture is a high-resolution texture of a small patch of terrain. This texture is typically tiled

(i.e. repeated) at every heightfield quad and blended additively or multiplicatively together with the

global texture. This will give the global texture a high-resolution look to it. The disadvantage is that

different types of ground materials (represented by the different colors in the global texture) will

use the same, globally applied detail texture to improve visual resolution. This could result in, for

example, strange looking patches of green grass (from the global texture) with a rock-like look (from

the detail texture). See Figure 8.2.

Quad textures

 One way of introducing detail that matches the

material type (e.g. rock and grass) is to assign a single

detail texture from a small, fixed set of detail textures

to each heightfield quad. This can be implemented by

replacing or extending a global texture to assign a

number to each terrain quad, indexing into a detail

texture array. Of course, changing the texture per quad will create visible texture seams unless

carefully constructed transition textures are placed between adjacent quads of different material

types. See Figure 8.3. This technique can be interpreted as a 3D application of classic 2D arcade

sprite tiling. Another (or combined) global color texture might be used to blend with the quad

texturing to introduce some subtle variance in the color, hence hiding the repetitiousness of the

detail textures somewhat. Requiring at least one transition quad between different types of terrain

might result in too smooth transitions in some rapid-changing situations. The number of transition

textures is quadratic in the number of different terrain types, becoming the limiting factor.

 Wang tiling can be considered to be a special case of quad texturing. There, tiles (i.e. a texture per

heightfield quad) are selected and assigned from a minimal set of carefully constructed tiles to

effectively create an aperiodic tiling pattern [STAM97]. See Figure 8.4. Edges of the tiles in this set

FIGURE 8.3 Quad texturing without transitions. Note the

seams between the rock and grass texture. From [DEXT05]

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 54

are said to be color coded and need matching edge colors with their neighbors, much like dominos,

when laid on the heightfield in order to create seamless a result. A carefully constructed set of tiles,

combined with a set of recursive production rules will create a seamless tiling. Although aperiodic

tiling greatly reduces the visual repetitiveness of a texture, it isn’t clear how to adapt this to use

multiple base textures including transitions between these (e.g. grass and rock).

Standard, periodic tiling Aperiodic tiling

FIGURE 8.4 Example of standard tiling and aperiodic Wang tiling. From [STAM97]

Splatting

 Splatting can be seen as an extension to quad

texturing, using automatic blending of different

textures. Transitions and material blending (e.g. 20%

sand and 80% dirt) are done in real time by calculating

a weighted average of different material textures.

These weights are assigned per vertex, typically using a

texture for weight look-ups, and are linearly interpolated between vertices during rendering of the

terrain quads [BLOO00] [DEXT05]. See Figure 8.5. Typically, only a few materials are used locally at

once because blending too many textures together will result in a muddled appearance. But over

larger distances, many other materials might be found. Storing the blending weight for all possible

materials per vertex, of which many weights would be zero, would require a lot of memory. Partition

techniques can be applied to store only the non-zero weights of textures actually used at different

areas of the terrain, resulting in considerable memory conservations. Although the splatting

technique can introduce variation through subtle weight perturbations to hide patterns of

(identical) texture repetition, Wang tiling could be applied to hide these patterns further. However,

its advantage might be outweighed by the increase in difficulty to create a Wang tiling set for each

base texture and the increase in algorithm complexity and storage requirements to use Wang tiling.

Procedural techniques

 Like the procedural generation of heightfields, textures can be generated and assigned

procedurally. Creating textures procedurally could potentially result in infinite detail. However, this

would have to be done in real-time, as storing an offline generated texture would only differ in the

method of creation, not the representation and mapping. However, real-time generation of

complex procedural textures is currently still too compute intensive for most purposes. Also, these

procedural techniques would not allow any fine-grained local control over the texturing, similar to

procedural techniques discussed in Chapter 4. As processing power increases, more complex

FIGURE 8.5 Splat texturing. Compare to Figure 8.3. From

[DEXT05]

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 55

schemes are used in games and other interactive applications. Consequently, a shift from

global/detail texturing and quad texturing to splatting has taken place in the last few years. As

hardware advances further, high-detail real-time procedural techniques might eventually become

the dominant technique. But as this report focuses on the best possibilities for editing terrain on

today’s hardware, only the de facto splatting is considered in subsequent subsections.

8.2 Splatting Extended

 As explained above, texture splatting uses blend weights to locally blend

between textures in real-time. During rendering, the different blend

weights are sampled from a global texture containing exactly one sample

per heightfield vertex. To aid the designer in designing these local weights,

a layered material representation is generally used. These weights then

correspond to the opaqueness of a material layer. Typically, the designer is

expected to define these materials. Materials typically consist of a texture and a scaling factor. These

materials are blended in a pre-designed order during rendering. This ordering is important since

blending material A with B will generally not be identical to blending material B with A. For example,

when the ‘higher’ layer of the two has 100% opaqueness, the ‘lower’ layer will be completely

covered, independently of the opaqueness setting of this lower layer. An example of a layered set of

materials can be found in Figure 8.6. When these specific layers would be used, the grass texture

will always be placed on top of the sand texture. Also, any rock texture can only be visible when the

weight of ‘snow’ is locally smaller than 1.0. Some implementations allow a hierarchical parent-child

system, where the local opaqueness of child layers is multiplied by the opaqueness of their parents.

In effect, a texture assigned for a child layer will only be visible when both parent and child locally

have a non-zero weight assigned. Therefore, the ‘Long Grass’ child in the example above could only

be visible where its ‘Grass’ parent has a non-zero opaqueness.

 The weights are typically brushed on the terrain by the designer by selecting a circular brush and a

material to paint with. Brushing is intuitive and typically appreciated by designers. This could be

extended by constraining the brush using other factors. In natural scenes, the type of visible local

surface material depends on many factors including soil type and erosion (e.g. soft sediment or hard

rock), temperature, absolute height (height above sea level), local relative height (local valleys

generally contain more water and are more sheltered), slope steepness and slope direction, all

influencing the local sun, wind and rain conditions [HAMM01]. From these, the local height and

slope attributes can directly be calculated for a heightfield. These properties can be used for user-

defined brush constraints (e.g. not allowing the snow texture weight to be increased below a

certain absolute height). The designer could then select min/max ranges for these height and slope

constraints and paint with broader brush strokes while automatically considering the terrain

geometry. To prevent these constraints from creating too regular and hard-edged weights, these

constraints can be made softer by using a falloff ramp near the ranges’ min/max values. Also, local

FIGURE 8.6 Example of a
user-defined material layer

hierarchy.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 56

height and steepness values can be blurred together with values of neighboring quads to create a

smoother result. To introduce irregularities, a noise function (see Chapter 5) can be used to locally

perturb the selected ranges.

 An alternative to using (non-global) geometry-constrained paint brushes would be to enforce

these constraints globally. This could be used to generate a user-defined first approximation of the

terrain texturing. In some (purely procedural) applications, this is in fact the only option available to

the user. Note that applying the constraints globally could undo any previously handcrafted work,

similar to procedural heightfield generation. In Section 7.4, a solution was proposed to overcome

this problem by allowing procedural results to be blended in, with or without the use of layers. For

texturing, a somewhat similar approach could be used. A solution would be to use a double set of

layers, the upper half taking precedence over the lower half. Then, the lower half could be assigned

procedurally and allow height and slope constraints to be set. The upper half of the layer set is used

by the designer to paint on top of the procedurally defined texturing where desired. When the

designer would like to make a local change, he could do so by brushing (i.e. increasing the local

weight of) one of the layers of the top half. Likewise, undoing any local custom changes could be

done by simply erasing any painted weights of the top half. Adjusting and globally applying the

procedural settings after local changes have been made is possible as updating the lower half of the

layers would not affect the custom painted upper half on top of it. Implementing this directly would

double the number of real-time texture lookups. However, the doubled set of material weights,

defined by the custom and procedural weight for each of the used textures, can transparently be

compiled onto a single set of texture weights as a render preprocess operation without loss of

flexibility. In fact, the only difference is editor representation, not renderer implementation.

8.3 Texture Projection

 As discussed in Section 3.1, one problem with heightfields is the uniform resolution across the

horizontal plane. As a result, steep areas contain less heightfield vertices per area unit because the

distances between vertices are increased by vertical differences. Splatting typically renders a

complete (blended) texture on each quad. Consequently, textures will be stretched in the steepest

direction. This texturing method can be interpreted as an orthographic projection along the vertical

axis of a (repeated) texture onto the heightfield.

 For arbitrary 3D objects, this problem is normally handled by applying more complex projections

or even unwrapping the mesh onto a texture plane, called UV unwrapping. This idea could, in

theory, also be used for heightfields. UV unwrapping is time consuming to do by hand.

Algorithmically generating optimal unwraps is feasible using, for example, iterative error/energy

minimization algorithms. However, these are typically slow and are global, affecting the texturing

even far away when a local change is made. Furthermore, texture coordinates are often not stored

explicitly in current applications, as these are typically derived directly from the vertex positions

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 57

projected on the horizontal plane to save memory. Therefore, automatic UV unwrapping is not very

practical for current applications.

 A simple and effective alternative would be use a different texture projection direction near very

steep terrain, other than the vertical axis. One way of implementing this would be to let the

designer assign a single X, Y or Z orthographic projection axis for each of the defined materials.

Note that selecting a projection axis would only influence the way texture coordinates are derived

from the 3D heightfield vertex information. Therefore, nothing is actually rendered from aside and

so occlusion and back faces are never an issue when projecting. The designer can create different

materials using the same texture but with a different projection axis. Then, the local projection axis

can be chosen freely by brushing with, or procedurally assigning, the most appropriate material.

Obviously, using the material of a certain texture that has its projection axis most perpendicular to a

quad’s surface would cause the least amount of texture stretch. The splatting of the different

materials will cause a transitional blend between any neighboring areas that use a different

projection, just like any other texture splatting blend. This blending of identical textures using

different mappings will not be too noticeable, as terrain textures are already designed to contain as

less distinguishable, separable features as possible in an attempt to hide repetitious tiling patterns.

The performance penalty is no different than having many different textures applied to a terrain.

Smart partitioning into smaller patches of terrain would significantly limit the number of different

materials to be blended per quad during rendering, only using more blends near transitional areas.

8.4 Preliminary Discussion

 This chapter has given an overview of techniques described in literature and found in practical

applications. As computational power and storage capacities increase, more complex render

techniques become feasible at real-time frame rates. Currently, texture splatting is the preferred

technique as it relieves the designer from explicit creation and assignment of transitions between

different types of ground coverage, while limiting the amount of memory and processing power

required. Subtle variations are easily added by small changes in weights, possibly combined with a

subtle global color texture map. Designers could be enabled to design ground coverage layers

using a hierarchical material representation. Height and slope dependent layer parameters could be

chosen to procedurally assign material textures, possibly extended with blurring and noise

perturbation to create a more varied result. Local modifications could be made to a procedurally

generated global material assignment by supporting local brushing with one of the selected

materials. These custom changes can be kept separate from the procedural layers by transparently

doubling the set of used materials and let the custom changes always take precedence over the

procedural assignments. This keeps procedural changes as a result of changed procedural

parameters separate from any custom work, allowing for (re)tweaking of these parameters at later

stages without destroying any of the handcrafted changes.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 58

 Although all of the separate features mentioned above have been implemented in one or more

editing applications, most applications only support a subset of these features. However, to support

a designer optimally, implementing this full set of features would be very useful. Also, this system

can be made more powerful by letting the procedural assignments be dependent on other factors.

An example of this would be to have an independent procedural field locally influence the weight

of a grass material, possibly combined with already discussed height and slope constraints. This

would result in patchy areas of varied amounts of grass. Another example of this would be to have

the ‘Long grass’ layer in Figure 8.6 be influenced by this independent (and possibly otherwise

invisible) field instead, creating a complex combination of different grass patches. Even another way

of achieving a more varied effect would be to have this field influence (or even decide) the local

color of an applied global texture, resulting in a more varied palette of colors. Each of these ideas

would result in a more natural, visually complex terrain with the minimum amount of effort.

Furthermore, other types of properties and geometry might influence the procedural choice of local

ground coverage. For example, grass generally doesn’t grow very well in thick forests and on

shorelines. So, it makes sense to allow proximity of large amounts of water and large objects (e.g.

trees) be used as additional factors in the procedural decision of texturing.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 59

9 Foliage Placement
 Both terrain geometry and texture editing has been discussed so far. This chapter covers the last

aspect of outdoor terrain discussed in this report: placement of foliage objects (e.g. grass, bushes

and trees). In contrast to terrain texturing, terrain foliage objects (and other types of natural objects,

like rocks) consist of (textured) 3D geometries, placed on top of the terrain. Foliage geometry

creation is not covered in this report. The interested reader is referred to [PRUS90]. Instead, this

chapter discusses the effective placement of foliage geometry objects onto the terrain. Please note

that placing rocks and stones is not mentioned explicitly in this chapter, as it would suffice to use

simplifications of the algorithms discussed below. Hence, support for rock placement could easily

and transparently be added.

 As virtual foliage consists of 3D geometry, individual objects can be placed into a virtual

environment like any other type of geometry. Typical tools used for this would be object importing

and translation, rotation and scaling operations. Each object can be placed individually by the

designer as he wishes. This might be ideal in some cases that would require exact control over the

result. For example, creating a garden with plants placed in some desired pattern, but also, trees

that are part of the gameplay in a game and are placed there for a specific purpose. However,

creating large patches of grasslands or forests in this way would be very cumbersome.

 Once again, procedural techniques can be used to support designers by allowing them to apply

foliage on a higher level. Two different techniques of foliage placement are discussed here: L-

systems and density evaluation. These two approaches are discussed in the first two subsections.

The main disadvantage of both basic techniques and a solution to this disadvantage are discussed

in Section 9.3. A preliminary discussion is given in Section 9.4.

9.1 L-Systems

 L-systems [PRUS90] are most known for their use in procedural generation of plant geometry. L-

systems apply rewriting operators (production rules) to an initial string (the axiom) using a finite

symbol alphabet. Complex, natural structures can emerge when this string is interpreted after string

rewriting has been completed. For plant generation, symbols like branch commands and

radius/length modifiers are used. The applied rewriting rules are designed to result in additional

branching after each completed iteration to simulate growth, creating natural virtual plants when

the resulting symbol string is interpreted as a geometry construction sequence. Strict L-systems lack

context sensitivity and the support for external function evaluation. When extended with these

features, L-systems have shown to be remarkably successful in simulating all sort of growth. For

example, in [PARI01], L-systems have been used to generate whole cities. In [DEUS98] and [LANE02],

the spreading, growth and death of foliage objects is simulated using L-systems. These rules

effectively enforce a natural balance between foliage over many iterations. Also, by incorporating

nearest neighbor distance functions into the rules, more complex ecological effects can be

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 60

simulated. Good result can be obtained through L-systems. However, this approach is rather

compute intensive [DIET06] and hard to design. But this is not the only approach capable of

naturally placing foliage.

9.2 Density Evaluation

 Procedural techniques discussed in previous chapters all worked on images and, therefore, also on

heightfields. In contrast, foliage object placement requires placing individual objects, not field

construction. However, placement of individual objects can be accomplished by sampling random

(local) positions using a (globally defined) probability mass function. For example, creating a forest

using such a tool would comprise of brushing the global outline of the forest into the probability

field. Then, the probability distribution field is used to take random samples which are then

interpreted as positions of individual foliage objects [LANE02]. By interpreting a procedural field not

as a heightfield but as a probability function, a link to the earlier procedural algorithms is

established. Interpreted as a field, the discussion in Section 8.2 on procedurally selected ground

coverage types is directly applicable. For example, geological properties (e.g. local height and slope)

can be used as influences on such a ‘probability field’. Furthermore, it can be blended with an

independent, procedurally generated field to introduce variance. Also, the discussions and

suggestions on custom manipulation in Section 7.2 are directly applicable. For example, a designer

could brush probabilities, either directly on the procedurally generated result, or indirectly through

the use of a layered representation. In the layered representation, a separately kept density field (i.e.

a layer) could be combined with the procedural result when required during sampling, while

offering a clean separation between custom and procedural placement influences.

To efficiently calculate a position (X, Y) to place a piece of foliage at using a density field, a discrete

2D joint mass density field P, which is essentially a matrix, can be sampled as follows:

1. Calculate the marginal probability Px(x ≤ X) from P(x, y) for each column X in the matrix P

2. Generate a uniformly distributed random number rx∈ [0,1] and find X such that Px(x ≤ X) is

closest to rx

3. Calculate the conditional probability function P(y ≤ Y | X). Note that Y denotes a row of P

4. Generate a uniformly distributed random number ry∈ [0,1] and find Y such that P(y ≤ Y | X) is

closest to ry

 Note that these X and Y components form an integer coordinate in the horizontal plane. This

algorithm can easily be adapted to interpolate between the two Xs and Ys closest to rx and ry,

respectively, to calculate a continuous position instead of integer indices. And, of course, this two-

dimensional coordinate in the horizontal plane can be transformed into a three-dimensional world

coordinate by adding a vertical component, looked up from the heightfield.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 61

 Another technique to sample P(x, y) is called dithering. Although normally used to reduce the

repetitive error of quantized digital signals, a standard (Floyd-Steinberg) dither technique can also

be used to create a pattern of zeros and ones from P [LANE02]. Then, all ones would indicate that an

object should be placed there. This algorithm traverses P in raster scan order and propagates any

quantization error among its neighbors that are not yet processed, using a fixed set of quantization

error distribution weights. As P is effectively transformed to a binary matrix, the positions of the

objects (i.e. the indices of all 1s in the binary matrix) are all integers. Additional small random

perturbations can be used to makes these positions continuous.

 Some of the object positions calculated using one of the two algorithms presented above might

lie much closer to each other than others. However, natural foliage growth is dependent on

sufficient amounts of sun, water and nourishment, preferring a more even distribution.

Consequently, spreading the positions of foliage objects more evenly might improve the realism of

intended result (e.g. a forest). As suggested in [DEUS98], this might be achieved by iteratively

moving each calculated position slightly towards the center of its Voronoi polygon.

 9.3 Density Evaluation Extended

 The disadvantages of both L-systems and the density evaluation method as described in the

previous sections are similar to those of the techniques discussed in Chapter 4. The procedural

result can be recalculated using other parameters and can even be influenced locally for L-systems

and density evaluation by changing the context sensitive functions or brushing changes to a

probability mass function, respectively. However, making local manual modifications to the

positions of (some of) the individual foliage objects would have its difficulties. Although changing

foliage object locations after a procedural algorithm has finished might be possible, any subsequent

calls of the procedural algorithm will recalculate all positions and thus completely override these

manual changes. Another disadvantage of these techniques is the difficulty of specifying more

complex ecological dependencies and constraints between foliage objects.

 A workaround for this would be to use two separate and independent layers of foliage objects,

similar to the layered texturing approach discussed in Section 8.2. Foliage could be defined

procedurally in one (bottom) layer, while the other (top) layer would contain all foliage objects that

are placed manually by the designer. Obviously, this still wouldn’t solve the problem of manually

editing foliage placed by the procedural algorithms directly. However, the probability function used

for the procedural placement can locally be brushed to zero probability for the density evaluation

approach in order to clear all procedural foliage objects in a certain area after recalculation.

Likewise, the context sensitive L-systems functions could be adapted to leave a designated area

clear from foliage when (re)evaluated. Then, this area could be filled with manually placed objects,

offering the maximum of control to the designer.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 62

 Another, more elegant, solution to this problem is presented in [LANE02] by extending the

probability density approach. Just like the original probability density approach it uses a joint

probability mass field that can be procedurally determined and influenced through custom

brushing. However, instead of an initial phase of (influenced) density field calculation, followed by

the calculation of all foliage object positions, the density field is influenced by all already placed

foliage and updated for each new object. In effect, foliage objects are placed one by one, each

influencing the probability distribution used for the next random sample taken. This way, the

procedural algorithm can be used to add new objects to an already (partially) filled terrain where

desired, not requiring a complete recalculation of the positions of all placed objects. Consequently,

manually placed objects can safely and transparently be mixed with procedurally placed objects

and can be edited afterwards on the individual object level where desired.

 Also, brushing to affect the density function can be replaced by or complemented with direct

object ‘brushing’, where only objects inside the current area under the brush tool will be affected.

Different tool settings could result in adding, deleting or replacing these objects on request at a

given change speed (instant or some number of objects per second). The brush tool could, for

example, also be complemented with earlier discussed constraints like allowable height and slope

steepness ranges. Again, feathering and noise perturbation could help to make transitions between

different (constrained) areas more natural.

 This extension allows (and needs) the probability mass field to be influenced by each of the

individual foliage objects. For this, a 2D modification kernel is applied for each object to modify the

density field. Because the density field represents a joint probability mass function, the sum of all

elements should be kept normalized to 1 before and after each update. In nature, one is likely to

observe local clusters of a specific plant species. See Figure 9.1. This is partly the result of species-

specific topographic preference (e.g. soil, groundwater level, height, slope steepness and direction).

This effect could already be achieved by letting local values of the terrain elevation and slope

steepness influence the procedural density field. Alternatively, this could be achieved by setting

direct constraints (e.g. height and slope ranges) on a foliage ‘painting’ brush. Another factor in

typical vegetation clustering is the way many species of plants reproduce. For example, some plant

species drop seeds that are likely to fall near their parent plants, while other species propagate by

runners. This ecological effect can be simulated by choosing a suitable shape for the kernel when an

object is placed. See Figure 9.2 and 9.3. The third and fourth kernel in Figure 9.2 will have a

prohibitive (negative) influence on the density function at very close range. However, a promotional

(positive) influence is added to the density function at an ideal distance for child plants. By scaling

the radius and amplitude of these kernels, the preference of the plant species can be modified.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 63

FIGURE 9.1 Random (left) and ecologically motivated (right) placing of trees. From [LANE02]

FIGURE 9.2 Four different types of kernels. Kernel effects from left to
right: prohibit close placement, random, weak and strong clustering

preference. From [LANE02]

FIGURE 9.3 Tree placement and its probability density function. The
kernel used promotes clustering at an ideal distance. From

[LANE02]

 The above only considers ecological placement of one type of plant species (i.e. foliage object

families). When different types of foliage need to be placed in the same area, this idea can be

extended naturally to create a density function for each type of foliage used and apply a different

kernel for each species-species pair to model interdependencies between species. See Figure 9.4.

Note the local interspecies’ prohibitive kernel and intraspecies’ clustering kernel.

FIGURE 9.4 Dependencies among and between species modeled through the application of different kernels on a species’ density function.

From left to right after one and six objects have been placed, respectively: resulting density function for (the lighter) species one, terrain
containing placed tree objects for species one and two, resulting density function for (the darker) species two. From [LANE02]

9.4 Preliminary Discussion

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 64

 Two different approaches have been discussed. Extended L-systems can be used to model

reproduction, growth and death of individual objects in an ecosystem. Terrain, intraspecies and

interspecies dependencies can be modeled by incorporating these dependencies into the

production rules. However, the resulting population is emergent from the interactions between

these rules and can, therefore, be hard to design. The placement of foliage objects would consist of

calculating a produced string and then calculating all object positions from this string at once.

Integrating feedback of manually or procedurally placed foliage at an earlier stage into the

calculation of new positions is therefore complex and difficult to support. The second approach has

the same problem in its basic density evaluation form. However, when extended with a feedback

loop by making subsequent changes to the probability density field for each foliage object found or

added, foliage can be added transparently by subsequently adding single objects into an area that

was either initially empty or contained earlier placed objects. Ecological dependencies can be

modeled as direct density field influences (e.g. height and slope constrains [HAMM01]) or as intra-

and interspecies kernel pairs [LANE02]. Brushing foliage only inside a certain brush region is easily

supported by making all probabilities of the density function zero for all areas outside the area

currently covered by the brush. In fact, the density function only needs to be evaluated for the area

currently covered by the brush, saving significant calculation time. Consequently, the designer will

be able to brush foliage at interactively speeds. Also, growth of stronger individuals and death of

weaker individual plants can easily be simulated by scaling up individual plants inside the brush-

covered area and by removing individuals that are overpowered (e.g. standing too much in the

shade of larger individuals) [BENE02a].

 This chapter has been concerned with the procedural placement of foliage. The scale and rotation

of the foliage objects has not been covered explicitly. It is expected that taking simple random

samples for these two properties using a user selectable distribution would suffice. These

distribution settings could be offered to the designer as customizable brush properties, stored as

presets or sampled from a selected area. As stated in the introduction of this chapter, other types of

natural objects that can be found on terrain (e.g. rocks) often have less complex intra- and

interdependencies and, consequently, can be placed with a foliage placing tool with many

ecological dependencies disabled.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 65

10 Current Applications
 The three major topics covered in this report have been heightfield synthesis and editing, terrain

texture assignment and foliage placement. In this chapter, a few different applications that are

currently available to designers are shortly reviewed for their support in these areas. This is by no

means a complete list of available software. But it does give the reader an idea of the types of

applications that are currently available for these purposes, including their typical merits and

drawbacks.

Terragen (PlanetSide) http://www.planetside.co.uk

 Terragen offers a non-real-time heightfield landscape synthesis and rendering system. Its built-in

ray tracer is capable of creating very realistic images, including realistic lighting, atmospheric

effects, clouds, water reflection and terrain shadowing. Local terrain editing is not supported. So

heightfields are either created externally and imported or are completely procedurally synthesized.

Heightfield synthesis includes noise synthesis, range mapping and erosion, provided to the user as a

limited set of parameterized selectable options. Texturing is supported through texture splatting

and is completely procedurally assigned, similarly to the hierarchical representation discussed in

Section 8.2. Local texture editing is not supported. Vegetation or other objects are also not

supported. The created heightfields and global textures can be exported to be used in other

applications (e.g. a game engine or generic 3D editing application capable of placing and rendering

objects). Although the heightfields synthesized with Terragen look good, the number of different

types of natural terrain that can be created with it is somewhat limited.

World Machine (Stephen Schmitt) http://www.world-machine.com

 Like Terragen, World Machine is a heightfield synthesis application. However, its main focus is

flexibility to create these terrains. Simple real-time 2D and 3D rendering is supported, but this

feature is by far not as impressive as Terragen’s (non-real-time) renderer. The user can design terrain

by placing and connecting heightfield creation, blending and transformation nodes in a flow graph,

supporting many synthesis techniques discussed in this report. The image on the cover and many

other images in this report have been made with World Machine, indicating its flexibility. A height-

based texturing color scheme can be chosen from a limited number of presets. Foliage is not

supported. Local editing (e.g. brushing) is also not possible. However, the node-based

representation does support (imported or procedurally generated) masks to where procedural

modifications should be limited to. Created heightfields can be exported to different formats.

Proficient users are able to create various types of natural landscapes with it, but it generally

requires much experience and tweaking to do so.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 66

Terragen 2 (PlanetSide) http://www.planetside.co.uk

 This new version of Terragen is currently still under development. Like the first Terragen,

procedural synthesis and rendering are its main focus. Terragen 2 will be extended to allow

overhangs. Automatic placement of imported rocks and vegetative models is supported. Foliage

placement, texturing, heightfield synthesis and rendering options are represented in a powerful

flow-graph system, allowing the user to couple function nodes as desired. Like World Machine, local

editing is not supported but can be approximated through the use of node masks. Currently, only a

technology preview application is available. Due to the flexibility of this system, synthesis and

rendering are relatively slow, although this might be improved in the release version. The actual

release date has not yet been announced.

CryENGINE Sandbox 1 & 2 (Crytek) http://www.crytek.com

 Official WYSIWYG level editors for the Crytek game engines, used for Farcry and the upcoming

Crysis game. It offers an impressive set of tools to aid the level designer. It allows heightfield loading

and simple procedural generation, Local editing is supported through the use of brushes. However,

only the simple brushes discussed in Section 7.1 are available. Hence, no terrain blending tools are

offered. Extensive terrain texturing is supported, similar to the layered representation discussed in

Section 8.2, including choosing between X, Y and Z projections. Textures can be assigned both

manually and procedurally but use the same set of materials. Hence, reapplying a procedural

texture assignment at a later stage would overwrite all custom texture modifications. Foliage

brushes are well supported, allowing both manual and procedural placement of (imported)

individual foliage objects. Sandbox 2 has more advanced features in texturing and placing foliage

than the original Sandbox. Both versions offer an easy and intuitive user interface.

UnrealEd 3 (Epic) http://www.unrealtechnology.com

 Official WYSIWYG level editor for the Unreal Engine 3 game engine and used for Gears of War. Fully

integrated level design tool that supports heightfield importing, but offers no form of heightfield

synthesis itself. Editing of heightfield is only supported through the basic editing brushes discussed

in Section 7.1. Heightfield blending is not supported at all. Texturing splatting is supported through

the layered representation and allows a separation of procedurally assigned (base) layers and

(overriding) custom layers that can be brushed manually. Procedural foliage placement is (currently)

not supported. The user interface of the editor is somewhat hard to use efficiently as it constantly

requires manual settings to be set.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 67

 From this summary of typical tools, it is clear that there is much potential for improvement.

Although some game level editors offer some form of procedural heightfield synthesis, the tools

available to designers can roughly be divided into two categories:

- Low-level level editing applications, supporting simple terrain editing tools, while offering

little or no support for procedural techniques.

- Procedural landscape generators, capable of synthesizing and previewing terrain to create

new images or export resulting heightfields for further use in other applications. These

applications generally offer no tools at all to edit terrain locally.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 68

11 Conclusions
 This report gives an overview of techniques found in literature and in practice concerning

synthesizing and editing virtual outdoor terrain. After an introduction into the field was given, the

growing problem of the labor intensity of manually designing outdoor environments was

described, focused specifically on computer games. A short overview was given of the applications

that are typically available to today’s designers, demonstrating the currently limited and

fragmented support in the area of efficient terrain design. This report has covered three different

areas of terrain design in depth:

- Heightfields. Different procedural heightfield synthesis algorithms, synthesis by example

algorithms and heightfield editing tools were discussed in Chapter 4 through 7.

- Texturing. Different representations of terrain texturing, manual editing techniques and

procedural texture assignment techniques were covered in Chapter 8.

- Foliage. Different ways of efficiently and realistically adding foliage to terrain, by manually

and/or procedurally placing foliage objects, are discussed in Chapter 9.

 As both novice and advanced level designers would agree, today’s level design tools have many

shortcomings. One area of improvement would be the integration of different tools into one

coherent and intuitive interface. In contrast, current applications as a whole do cover the larger part

of the algorithms, techniques and tools discussed in this report, but seldom offer a substantial

subset of the covered topics within one application. To maximize the efficiency of a designer’s

workflow, a broad range of intuitive and consistent tools should be offered within a single

framework.

 As the design process of terrain is a creative art that often requires many iterations to be made, it is

essential to support this paradigm and provide tools that preferably work at interactive or even real-

time rates. For simple, data-intensive tasks, the graphics processing unit (GPU) of today’s PCs can be

used to quickly process vast amounts of data. When tool calculations are (partly) transferred from

the CPU to the GPU, a speedup of somewhere between a half and almost two magnitudes is

expected, depending on the task at hand. Furthermore, many alternative approaches for potential

tools are surveyed in this report. This allows the implementation of tools to be chosen based on the

tradeoffs between accuracy, complexity, scalability and speed of the different approaches. The

preliminary discussions throughout this report offer practical insights and comparisons for each of

the covered topics, respectively.

 As this report shows, ideas and techniques from other fields could be reused and integrated into a

user-friendly interface to provide the user with more powerful tools of proven quality. For example,

techniques described in the chapters on heightfields by example and heightfield blending (Chapter

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 69

6 and 7) were originally introduced and used for image manipulation. Powerful interactive blending

tools are expected to aid designers in reusing procedural techniques in later stages of partial

redesign, iterative design or simply in the process of tweaking. Thus, heightfield design would

greatly benefit from these techniques, yet no serious application exists that incorporates these

features.

 Tool flexibility is another area that could be improved. For example, global erosion and domain

perturbation have been part of many procedural generation applications as a step in the global

generation procedure, yet these techniques have never been offered as editing tools. When these

techniques would also be offered as brushes, they would efficiently aid the designer in the task of

creating custom, natural-looking areas. Also, tools could be applied only to one of a multitude of

layers or nodes as another means to increase the flexibility of the workflow and speed up the

process of experimentation and tweaking. When the designer is allowed to subdivide different

areas, stages, experiments or detail levels into separable layers or nodes, these layers or nodes could

be reedited separately and recombined on the fly. Furthermore, when the recombination feature

supports complex operations (e.g. perturbation using a second input field or multi-resolution

blending two heightfields) to be chosen by the user, a new and powerful range of editing

possibilities becomes available.

 Offering both local editing tools and more global generation tools to design heightfields enables

the designer to choose the level of control that is most appropriate for the current task. Using global

procedural tools provide a quick way to create landscapes with little effort that look very natural. On

the other hand, local editing tools require more effort from the designer but offer the fine control

that is needed to locally tweak an area. These different levels of editing are highly complementary

and support the designer at different terrain scales and editing tasks. This is true for heightfield

editing, but also for terrain texturing and foliage placement. The discussed terrain texturing and

foliage placement techniques potentially offer a high-level, global procedural assignment of ground

coverage and vegetation that can be tweaked at a medium level of control through the use of

influencing brushes or at the maximum amount of control through local editing, all working

interchangeably while considering geometrical and ecological constraints.

 In short, natural terrain creation is a field that still offers much potential for improvement. Even

though the game industry is rapidly evolving and otherwise uses cutting-edge technology, the

tools that are available for terrain editing only improve at a relatively slow pace. This report has

exposed many of the problems with these tools, but more importantly, it has provided valuable

insights on how to potentially improve these tools in order to aid the level designer in new and

promising ways.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 70

Bibliography
[ADEL84] E.H. ADELSON, C.H. ANDERSON, J.R. BERGEN, P.J. BURT, AND J.M. OGDEN. Pyramid

methods in image processing. In RCA Engineer, vol. 29, no. 6, 33-41. 1984.

[ASHI01] M. ASHIKHMIN. Synthesizing natural textures. In Proceedings of the 2001 Symposium

on interactive 3D Graphics SI3D '01. ACM Press, New York, NY, 217-226. 2001.

[BELH05] F. BELHADJ, P. AUDIBERT. Modeling landscapes with ridges and rivers. In Proceedings

of the ACM Symposium on Virtual Reality Software and Technology ‘05. ACM Press, New

York, NY, 151-154. 2005.

[BENE01a] B. BENEŠ, R. FORSBACH. Layered Data Representation for Visual Simulation of Terrain

Erosion. In Proceedings of the 17th Spring Conference on Computer Graphics (April 25 -

28, 2001). IEEE Computer Society, Washington, DC, 80. 2001.

[BENE01b] B. BENEŠ, R. FORSBACH. Parallel implementation of terrain erosion applied to the

surface of Mars. In Proceedings of the 1st international Conference on Computer

Graphics, Virtual Reality and Visualisation. AFRIGRAPH '01. ACM Press, New York, NY,

53-57. 2001.

[BENE02a] B. BENEŠ, A Stable Modeling of Large Plant Ecosystems. In Proceedings of the

International Conference on Computer Vision and Graphics, 94–101. Association for

Image Processing. 2002.

[BENE02b] B. BENEŠ, R. FORSBACH. Visual Simulation of Hydraulic Erosion. In Journal of WSCG

2002, 10. 2002.

[BENE06] B. BENEŠ, V. TĔŠINSKY, J. HORNYŠ, S.K. BHATIA. Hydraulic Erosion. Computer

Animation and Virtual Worlds, 16, 1-10. 2006.

[BLOO00] C. BLOOM. Terrain Texture Compositing by Blending in the Frame-Buffer. 2000.

http://www.cbloom.com/3d/techdocs/splatting.txt.

[BOLZ03] J. BOLZ, I. FARMER, E. GRINSPUN, P. SCHRÖDER. Sparse Matrix Solvers on the GPU:

Conjugate Gradients and Multigrid. In ACM Transactions on Graphics, vol. 22 , no. 3.

Jul. 2003.

[BONE97] J.S. DE BONET. Multiresolution sampling procedure for analysis and synthesis of

texture images. In Proceedings of the SIGGRAPH ‘97. ACM Press/Addison-Wesley

Publishing Co., New York, NY, 361-368. 1997.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 71

[BURT83] P.J. BURT, E.H. ADELSON. A multiresolution spline with application to image mosaics.

In ACM Transactions on Graphics (TOG), vol. 2, no. 4, 217-236. Oct. 1983.

[COOL69] J. COOLEY, P. LEWIS, P. WELCH. The finite Fourier transform. In IEEE Transactions on

Audio and Electroacoustics, vol.17, no. 2, 77-85. Jun. 1969.

[COOK05] R.L. COOK, T. DEROSE. Wavelet noise. In ACM SIGGRAPH 2005 Papers. J. Marks, Ed. ACM

Press, New York, NY, 803-811. 2005.

[CHIB98] N.CHIBA, K.MURAOKA, K.FUJITA. An Erosion Model Based on Velocity Fields for the

Visual Simulation of Mountain Scenery. In The Journal of Visualization and Computer

Animation, vol. 9, no. 1, 185-194. 1998.

[DEUS98] O. DEUSSEN, P. HANRAHAN, B. LINTERMANN, R. MĚCH, M. PHARR, P. PRUSINKIEWICZ.

Realistic modeling and rendering of plant ecosystems. In Proceedings of SIGGRAPH

'98. ACM Press, New York, NY, 275-286. 1998.

[DEXT05] J. DEXTER. Texturing Heightmaps. GameDev.net. 2005.

 http://www.gamedev.net/reference/articles/article2246.asp

[DIET06] A. DIETRICH, G. MARMITT, P. SLUSALLEK. Terrain Guided Multi-Level Instancing of

Highly Complex Plant Populations. In Proceedings of the 2006 IEEE Symposium on

Interactive Ray Tracing, 169-176. Salt Lake City, USA. Sep. 2006.

[DIXO94] A.R. DIXON, G.H. KIRBY. Data Structures for Artificial Terrain Generation. In Computer

Graphics Forum, vol. 13, no. 1, 73-48. 1994.

[EBER03] D.S. EBERT, F.K. MUSGRAVE, D. PEACHEY, K. PERLIN, S. WORLEY. Texturing & Modeling:

A Procedural Approach. Third Edition. The Morgan Kaufmann Series in Computer

Graphics. 2003.

[EFRO99] A.A. EFROS, T.K. LEUNG. Texture Synthesis by Non-Parametric Sampling. In

Proceedings of the international Conference on Computer Vision (ICCV), vol. 2. IEEE

Computer Society, Washington, DC, 1033. 1999.

[ELIA01] H. ELIAS. Spherical Landscapes. 2001.

 http://freespace.virgin.net/hugo.elias/models/m_landsp.htm

[FOUR82] A. FOURNIER, D. FUSSELL, L. CARPENTER. Computer Rendering of Stochastic Models.

In Communications of the ACM, vol. 25, no. 6, 371-384, Jun 1982.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 72

[GAMI01] M.N. GAMITO. F.K. MUSGRAVE. Procedural Landscapes with Overhangs. 10th

Portuguese Computer Graphics Meeting. Lisbon. 2001.

[HAMM01] J. HAMMES. Modeling of Ecosystems as a Data Source for Real-Time Terrain

Rendering. In Proceedings of the First international Symposium on Digital Earth. C. Y.

Westort, Ed. Lecture Notes. In Computer Science, vol. 2181. Springer-Verlag, London,

98-111. 2001.

[HEEG95] D.J. HEEGER, J.R. BERGEN. Pyramid-based texture analysis/synthesis. In Proceedings of

the SIGGRAPH '95. S. G, Mair and R. Cook, Eds., ACM Press, New York, NY, 229-238.

1995.

[KELL88] A.D. KELLEY, M.C. MALIN, G.M. NIELSON. Terrain simulation using a model of stream

erosion. In Proceedings of the SIGGRAPH '88, R. J. Beach, Ed., ACM Press, New York, NY,

263-268. 1988.

[KRTE01] R. KRTEN. Generating Realistic Terrain. In Dr. Dobb’s Journal: Software Tools for the

Professional Programmer. Jul. 2001.

[LANE02] B. LANE, P. PRUSINKIEWICZ. Generating spatial distributions for multilevel models of

plant communities. In Proceedings of Graphics Interface 2002, 69-80. May 2002.

[LEFE05] S. LEFEBVRE, H. HOPPE. Parallel controllable texture synthesis. In ACM SIGGRAPH 2005

Papers. J. Marks, Ed. ACM Press, New York, NY, 777-786. 2005.

[LEWI87] J.P. LEWIS. Generalized stochastic subdivision. ACM Transactions on Graphics (TOG),

vol. 6, no. 3, 167-190. Jul. 1987.

[LEWI89] J.P. LEWIS. Algorithms for solid noise synthesis. In Proceedings of SIGGRAPH '89. ACM

Press, New York, NY, 263-270. 1989.

[LEWI90] J. P. LEWIS, Is the Fractal Model Appropriate for Terrain? Disney Secret Lab, 1990. 3100

Thornton Ave., Burbank CA 91506 USA. 1990.

[MAND82] B.B. MANDELBROT. The Fractal Geometry of Nature, New York, W. H. Freeman and Co.

1982.

[MAND88] B.B. MANDELBROT. Fractal landscapes without creases and with rivers. In the Science

of Fractal Images, H. Peitgen, D. Saupe, Eds., Springer-Verlag, New York, NY, 243-260.

1988.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 73

[MILL86] G.S. MILLER. The definition and rendering of terrain maps. In Proceedings of the

SIGGRAPH '86, D. C. Evans and R. J. Athay, Eds., ACM Press, New York, NY, 39-48. 1986.

[MUSG89] F.K. MUSGRAVE, C.E. KOLB, R.S. MACE. The synthesis and rendering of eroded fractal

terrains. In Proceedings of the SIGGRAPH '89. ACM Press, New York, NY, 41-50. 1989.

[MUSG93] F.K. MUSGRAVE. Methods for Realistic Landscape Imaging. Doctoral Thesis. Yale

University. 1993.

[NEAL03] A. NEALEN, M. ALEXA. Hybrid texture synthesis. In Proceedings of the 14th Eurographics

Workshop on Rendering. ACM International Conference Proceeding Series, vol. 44.

Eurographics Association, Aire-la-Ville, Switzerland, 97-105. 2003.

[OLSE04] Realtime Procedural Terrain Generation; Realtime Synthesis of Eroded Fractal Terrain

for Use in Computer Games. Jacob Olsen, Department of Mathematics And Computer

Science (IMADA). University of Southern Denmark. Oct. 2004.

[PARI01] Y.I. PARISH, P. MÜLLER. Procedural modeling of cities. In Proceedings of the SIGGRAPH

'01. ACM Press, New York, NY, 301-308. 2001.

[PÉRE03] P. PÉREZ, M. GANGNET, A. BLAKE. Poisson image editing. In ACM SIGGRAPH 2003

Papers. ACM Press, New York, NY, 313-318. 2003.

[PERL85] K. PERLIN. An image synthesizer. In ACM SIGGRAPH 1985 Proceedings. ACM Press, New

York, NY, 287-296. 1985.

[PERL89] K. PERLIN, E.M. HOFFERT. Hypertexture. In Proceedings of the SIGGRAPH '89. ACM Press,

New York, NY, 253-262. 1989.

[PERL02] K. PERLIN. Improving noise. In Proceedings of SIGGRAPH '02. ACM Press, New York, NY,

681-682. 2002.

[PERL04] K. PERLIN. Implementing Improved Perlin Noise. In GPU Gems. R. Fernando, Ed.,

Addison Wesley, 73-85. 2004.

[PRUS90] P. PRUSINKIEWICZ, A. LINDENMAYER. The Algorithmic Beauty of Plants. Published by

Springer-Verlag New York, Inc. 1990.

[SHAN00] J. SHANKEL. Fractal Terrain Generation. In Game Programming Gems, M. Deloura, Ed.,

Charles River Media, Inc. 499-511. 2000.

Interactively synthesizing and editing virtual outdoor terrain - G.J.P. de Carpentier, 2007 74

[STAM97] J. STAM, Aperiodic texture mapping. Tech. rep., R046. European Research Consortium

for Informatics and Mathematics (ERCIM). 1997.

[TATA05] N. TATARCHUK. Richer Worlds for Next Gen Games. Game Developers Conference

Europe ’05. ATI Research. London, England. 2005.

[VOSS85] R.F. VOSS. Random Fractal Forgeries, in Fundamental Algorithms for Computer

Graphics, R.A. Earnshaw, Ed., Springer-Verlag, Berlin. 1985.

[VOSS89] R.F. VOSS. Random fractals: self-affinity in noise, music, mountains, and clouds. In

Phyica. D 38, 1-3 (Sep. 1989), 362-371. 1989.

[WEI00] L. WEI, M. LEVOY. Fast texture synthesis using tree-structured vector quantization. In

Proceedings of SIGGRAPH 2000. ACM Press, New York, NY, 479-488. 2000.

[WORL96] S. WORLEY. A cellular texture basis function. In Proceedings of the SIGGRAPH '96. ACM

Press, New York, NY, 291-294. 1996.

[ZELI02] S. ZELINKA, M. GARLAND. Towards real-time texture synthesis with the jump map. In

Proceedings of the 13th Eurographics Workshop on Rendering, ACM International

Conference Proceeding Series, vol. 28. Eurographics Association, Aire-la-Ville,

Switzerland, 99-104. 2002.

