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1 Introduction 
 Ever since the early days of computer graphics (CG), research has been conducted on modeling 

and rendering three-dimensional (3D) virtual environments. For a few decades or so, practical 

applications of this research were limited to offline movie production. Nowadays, even desktop 

computers have enough processing power to render virtual environments at interactive or even 

real-time speeds. Consequently, applications like Virtual Reality training simulations and 3D 

computer games have become feasible. 

 

 With the ever increasing processing power of computers, it is possible to create more and more 

complex worlds at real-time speeds. For example, cutting edge 3D shooting games went from 

looking like Figure 1.1 to Figure 1.2 in less than fifteen years. 

 

 

     

 FIGURE 1.1   Wolfenstein 3D (id Software, 1992)  FIGURE 1.2   Gears of War (Microsoft Game Studios, 2006)  
 

 From the point of view of a ‘gamer’, this increased level of detail adds to the realism and 

immersiveness of these virtual 3D worlds. From the designer’s perspective, using this increased 

processing power can add to the artistic freedom and can give the product a cutting-edge look.  

However, this graphical complexity comes at a cost. Creating more detail is generally laborious and 

is, consequently, expensive. [TATA05].  

 

 Content creation has been traditionally a manual process to get the most out of the possibilities of 

a hardware platform. But this situation will not be maintainable for much longer as content creation 

is increasingly becoming a major bottleneck in game production. Hence, a shift from handcrafted to 

(semi-automated) generated content is slowly taking place.  

 

 This report focuses on only one of the aspects of designing content for virtual environments: 

outdoor terrain.  More specifically, it explores ideas and techniques that are or would be helpful in 

the process of designing outdoor terrain for 3D computer games. However, general ideas and 

techniques presented here might be applicable to other areas of the game level design process too. 

Also, other types of virtual-reality (VR) applications (e.g. 3D simulations and virtual workbenches) 

that require virtual terrain might benefit from the discussed ideas. 
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1.1 Problem Statement 

 The problem addressed in this research report is best described as: 

 

What features would an application need to have to intuitively, effectively and efficiently aid a game 

level designer in creating and editing virtual terrains, by automating tedious work as much as possible 

without limiting his/her creativity? 

 

 Although this question is not directly answered in this report, recommendations concerning the 

designer’s efficiency are given, together with a survey of techniques aimed at improving different 

aspects of this design process.  

 

 

1.2 Motivation 

 As discussed on page 1, the manual creation of content is not scaling well with the increased 

technological possibilities and user’s expectations. The game industry is currently wrestling with the 

problem of ever growing artist teams to keep up with the technological possibilities of game 

platforms. Currently, these artist teams handcraft most of all the geometric models and shading 

detail required for 3D characters and environments to make it look as realistic as possible. This has 

become one of the major expenses in all multi-million game productions.  

 

 Having ‘smarter’ techniques available to level designers that partly alleviate this burden by (semi-) 

automating laborious tasks is slowly becoming indispensable. Yet many of the current tools 

available to designers leave much to be desired. Therefore, investigating ways to support the 

workflow of a level designer might be very fruitful. 

 

 This report focuses on both commonly available and lesser-known techniques for modeling of 

terrains for use in computer games. These techniques are investigated from a technological point of 

view and are assessed based on their effectiveness as an aid to the level designer. Also, ideas will be 

sought after to create a toolset to maximally support an artist’s design workflow, without enforcing 

a predetermined order of design steps, to maintain maximum flexibility. 

 

 Because the report focuses on computer games, the scope is limited to only a (small) part of the 

field of 3D computer graphics. Namely, to graphics systems that focus on render speed, ruling out 

many systems that use more advanced off-line rendering techniques.  
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1.3 Chapter Overview 

 In Chapter 2 a short analysis of the requirements of game level designers is given and general rules 

of thumb about usability, efficiency and effectiveness of tools related to level design are described. 

Chapter 3 describes the different elements of terrain modeling and explains why this report is 

mostly limited to heightfields.  

 

 Chapter 4 explains the basic ideas of both experimental and trialed procedural methods to 

generate a heightfield landscape. Chapter 5 describes different methods to generate noise, the 

basic building block of most procedural (terrain) algorithms.  Chapter 6 discusses different texture-

by-example techniques. These techniques are able to generate images (or equivalently, 

heightfields) that are like, but not equal to, a given example image/heightfield.  

 

 Chapter 7, 8 and 9 focus on different aspects of editing handcrafted or generated terrain. 

Specifically, Chapter 7 discusses editing heightfields, Chapter 8 covers editing terrain texturing and 

Chapter 9 discusses foliage placement.   

 

 Chapter 10 gives an overview of the currently available editors and generators, focused on 

heightfields.  

 

 Preliminary discussions can be found in chapters 4 through 9, comparing the techniques discussed 

in each individual chapter from a practical point of view. These discussions complement the overall 

conclusions that can be found in Chapter 11.  
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2 Usability 
 This chapter shortly introduces the reader to the context of terrain design. Then, different aspects 

of toolbox design for level designers are discussed, aimed at optimally supporting these users in 

their creative process.  

 

 

2.1 Terrain Design 

 A system developed with the techniques mentioned in this report would assist game level 

designers in creating outdoor terrain for computer games. These terrains could be used as a basis to 

add level object like roads and buildings to.  

 

 In today’s outdoor game levels, different areas usually require different amounts of time to design 

and tweak. This is because storylines and (pre-scripted) actions are usually focused around multiple 

key points or routes to create pre-designed experiences for the players, thus limiting the need to 

design all areas on a level down to the smallest scale. Supporting designers at multiple scales is 

therefore an important factor in maximizing their efficiency. So placing, for example, vast amounts 

of trees in large areas where less control is needed might be done algorithmically (i.e. procedurally) 

to make this area more interesting in a few steps. On the other hand, strategically placing a few 

large trees in (often smaller) key areas for a player to hide behind might still be preferred to be done 

with complete control over each tree’s location.  

 

 

2.2 Design Loop  

 Ideally, designing game levels is an iterative process. Often, 

designers create a fairly detailed level which is then evaluated. 

See Figure 2.1. Evaluation involves testing a level for the amount 

of entertainment, which is hard to estimate beforehand. When 

the level doesn’t ‘feel finished’, the level is tweaked again. 

Tweaking a level might involve moving only a few objects around 

or, for example, slightly moving a road. But when that road needs 

to be adjusted and a large terrain feature like a mountain is in its 

path, a large area might be affected. 

 

 However, most applications available to level designers typically 

are designed around the idea of working from large to small. See 

Figure 2.2. The arrows indicate the direction of the (enforced) workflow. After the initial idea of a 

level has been decided, designers have a choice of starting off with a global approximation of this 

outline. One way of doing this is by searching for a (real-world) example of the type of terrain they 

need.  Another way is to have an application generate a random terrain algorithmically (i.e. 

procedurally). Techniques used to do this are discussed in Chapter 4. Having a rough first 

 

FIGURE 2.1   An ideal level design workflow 

Tweak large terrain 
features, small terrain 
details, game objects

Tweak large terrain 
features, small terrain 
details, game objects

CompileCompile

Evaluate gameplayEvaluate gameplay
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approximation for a level greatly reduces production time when it is relatively close to the desired 

end result. Then, large-scale global features can be added, followed by small-scale local editing. The 

disadvantage of the typical workflow using these tools is that, once an approximation for the whole 

level is chosen, only lower-level manual editing is possible. This means that only a workflow from 

left to right in Figure 2.2 is supported, making iterative design of both large and small features, as 

suggested in Figure 2.1, very difficult. 

 

 This report is partly dedicated to editing techniques that would allow higher-level handcrafted or 

generated features to be mixed and edited at any scale at any time in the design process, to better 

support the iterative process of a tweak-and-evaluate workflow. Integrating such techniques into 

the applications available to the designer would, for instance, allow adding a detailed generated 

mountain in a designated area with minimal effort even after other areas are already tweaked.  

 

 

FIGURE 2.2   A typical (left-to-right) workflow supported by current applications 
 

 

2.3 Parameter Space 

 Although higher-level tools might be more mathematically involved and harder to code, the user 

of such a tool should not be required to understand the technical details before he/she can use it 

proficiently. All that the user should be concerned about is achieving the desired result. This means 

that tools should behave in an intuitive way that is predictable to a non-technical user. The function 

of any tools should be unambiguous and easily describable to non-technical users.  

 

 One aspect of creating intuitive tools is choosing the right parameter space. Several aspects come 

into play when designing an intuitive toolset that lends itself to intuitive tweaking: 

- Tools that allow parameters to be tweaked to achieve different results should offer an 

appropriate amount of freedom. Too few parameters, and more advanced users are unable 

to fully benefit from the technology. Too many, and novice users might get overwhelmed 

by the possibilities.  

- Parameters should have a descriptive name of the effect it has, which is not per se a term 

used in scientific literature. 

- Brainstorm session
- Design Document
- Central Theme
- etc.

- Brainstorm session
- Design Document
- Central Theme
- etc.

Procedural generation of 
a random terrain

Procedural generation of 
a random terrain

Start from scratchStart from scratch

Import real-world terrainImport real-world terrain

Add or edit global features
- Mountains
- Hills
- Rivers
- Forest
- etc.

Add or edit global features
- Mountains
- Hills
- Rivers
- Forest
- etc.

Add or edit local features
- Locally edit global feature
- Add detail
- Add single trees
- etc.

Add or edit local features
- Locally edit global feature
- Add detail
- Add single trees
- etc.
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- The effect of different parameters should be as independent as possible. Presenting 

multiple parameters that only have slightly different effects should be prevented where 

possible. 

- The value range of any parameter should be intuitive to the user. Having a value range of 0-

1000 with only values between 700 and 800 having a useful effect isn’t the best choice. 

 

 

2.4 Toolbox Consistency 

 As with any design of a user interface, having a consistent set of tools makes working with it more 

intuitive. This means the interface of different tools should be as consistent as possible. For instance, 

having two tools that both need a radius as input should generally offer the same type of interface 

for this particular parameter. This can be achieved through the consistent use of particular input 

controls, hotkeys and 3D widgets. 

 

 Also, creating a user interface that is consistent with other applications that level designers are 

familiar with will make a tool easier to work with. For example, implementing (customizable) mouse 

and key functionality for navigating through a 3D world that is similar to one or more widely used 

3D applications is generally appreciated and will increase the overall productivity.  

 

 

2.5 Flexible Editing 

 The iterative nature of level design benefits from a powerful multiple-undo function. Having ‘Ctrl-

Z’ functionality greatly helps the designer to experiment with tweaking an effect that requires the 

execution of a sequence of multiple tools. Undoing multiple actions allows the user to backtrack to 

any given point in the action history and restart from there. 

 

 Having a representation that allows users to tweak a tool that was applied before the most recent 

operation, without undoing the intermediate operations, further increases this flexibility. One 

representation that offers this functionality is the separation of (manipulated) data in multiple 

layers. Many designers already are familiar with this idea from Adobe Photoshop, a well known and 

powerful 2D image manipulation application. In Photoshop, the user can create multiple layers in a 

hierarchy and select the layer a tool should be applied to. These layers are internally combined 

bottom-to-top by the application to render the actual image. Combining a layer with the layers 

below is done using a user-selectable combine operation per layer, optionally limiting the effect of a 

layer to a local area using an additional mask image. This allows Photoshop users to separate 

different elements of a picture and independently apply operations to them (e.g. draw with the 

selected brush, translate, scale and blur) or apply operations to the relation between a layer and the 

layers below (e.g. blend mode and opacity setting). A possible drawback of this layered 

representation is the memory footprint that grows linearly with the number of layers. 
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 Even more flexible and powerful is the representation of operations as a two-dimensional flow 

graph of operation nodes. This allows the user to apply a tool by connecting the input(s) of a new 

operation node to any of the already present nodes in a visualized flow network. Tweaking any of 

the previous steps can be accomplished by changing parameters in any of the nodes and 

recalculating outputs until all nodes are up to date again. A few powerful high-end content creation 

and processing applications use this representation. Examples of these are Apple’s Shake 

compositing tool and Side Effects Software’s Houdini procedural 3D animation/effects tool. A 

typical designer might not be used to ‘thinking’ in flow graphs and operation building blocks, 

causing a steep learning curve. However, expert users might be very pleased by the, otherwise hard 

to accomplish, flexibility. A drawback of this system is the amount of recalculation required when 

applying a change to the flow graph. This can be partly alleviated by reusing cached outputs if none 

of their inputs was affected by a change. Of course, caching increases the memory footprint 

considerably for large flow charts.  

 

 In short, which of the above representations is the most appropriate depends on the need for 

flexibility, the available system resources and the expertise of the user. Favoring one above the 

other requires a clear view of the exact toolset and its use and is therefore beyond the scope of this 

report. 

 

 

2.6 Tool Speed 

 Even complex ‘tweakable’ tools and parameters become usable when their effect is directly visible. 

Because optimizing a virtual world for its amount of fun or artistic beauty isn’t an exact science, it is 

often a process of trial-and-error. Shortening the feedback loop gives designers the opportunity to 

experiment with parameters more freely. Therefore, having tools that can be used at interactive 

speeds is a valuable asset. 

 

 If calculating the effect of a tool is too compute intensive to allow a preview of the effect in the 

edited world at interactive speeds, previewing the result at a smaller resolution might be a good 

compromise. This smaller preview might either be a smaller window or a less dense geometry 

representation the operation is performed upon. Obviously, this is only useful if the preview of the 

result at reduced resolution is a fair approximation of the final result. 

 

 The hardware available to designers typically consists of a stand-alone powerful desktop computer 

with plenty of RAM and a high-end graphics card with a powerful GPU. Since the early days of 

hardware-accelerated video cards, the processing power of the GPU has increased dramatically and 

remains to grow faster than CPU processing power. Factors that contribute to this fact are the 

increased clock speeds, amount and speed of onboard dedicated memory and the shift from a 

single special-purpose graphics processing unit to multiple (almost) general-purpose 

programmable Single Instruction, Multiple Data (SIMD) vector processing units. 
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 Many algorithms that can be implemented for partial or full parallel execution can therefore be 

sped up somewhere between a half and two magnitudes when work is transferred from the CPU to 

the GPU. Because terrain manipulation is very data-intensive and for the most part SIMD-like, 

executing these manipulations on the GPU is very likely to increase the performance. Furthermore, 

multi-core CPUs are becoming more and more mainstream, increasing the potential of parallelism 

even further. Having fast tools increases the user’s efficiency, which is why all algorithms mentioned 

in this report are evaluated, among other criteria, for their potential to execute in parallel.  

 
 
2.7 Tool Quality 

 Even though procedurally generated and placed geometry, texturing and foliage might look nice 

at a first glance, level artists/designers easily spot the limitations of most current implementations. 

Generally, natural terrain has different types of features at different locations. Also, most levels are 

designed with a clear idea of what type of environment it should be set in. However, most 

procedural techniques are best suited for creating one or a few terrain types (e.g. ridged mountains, 

rolling hills, sand dunes, rivers or islands). Therefore, it isn’t recommended to have one technique 

create the terrain for a whole game. Having a plethora of different techniques to choose from 

enables the designer to pick the right tool for each job. 

 

 The quality of any terrain tool is difficult to measure. If all processes involved in the creation of a 

certain type of landscape are fairly well understood, it is possible to create a model of these physical 

effects and run a simulation. Although this will result in physically most accurate results, running a 

full simulation might be impossible due to a limited understanding of a process or impractical due 

to the vast computational power required for an accurate simulation.  Luckily, as an engineer and 

artist, not as a scientist, a level designer is generally satisfied if a tool is available that has the desired 

effect, whether such a tool is physically correct or not. For him, and for the typical end-user, 

subjective beauty of the result is much more important than objective measurements, 

mathematical elegance or statistical proof.  For this exact reason, this report focuses mainly on the 

effects of different (efficient) methods, not on mathematical backgrounds. 
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3 Terrain Specification 
 Different aspects of terrain come into play when designing appealing virtual landscapes. Three of 

the main aspects are geometry, surface properties (texturing) and placement of natural objects. 

These three topics are introduced in this chapter and further discussed in the remaining part of this 

report. 

 

 

3.1 Terrain Geometry 

 Before discussing terrain geometry 

generation and editing, a small overview is 

given of the different options for 

specifying terrain geometry, each with its 

advantages and disadvantages for use in 

interactive applications. Choosing the type 

of topology to use for terrain geometry 

has a large impact on the possible types of creation and editing algorithms. But it also greatly 

influences what rendering techniques are suitable, how level-of-detail can be implemented in the 

real-time engine (i.e the core of each real-time graphics application) and whether it is possible to 

have overhangs, arches and caves. Having such impact, the choice of which types of terrain 

geometry can be used is often dictated by the graphics engine. Five types of geometry are 

distinguished and described below. Also, see table 3.1. 

  

Tetrahedrons 

 Starting with the most flexible type of terrain specification, tetrahedrons allow variable densities of 

vertices. Because of this flexibility, tetrahedrons are often used in physics simulations that use finite 

element techniques. Also, solid modeling can be implemented using tetrahedrons. However, this 

flexibility comes at the cost of larger storage requirements and more complex algorithms to handle 

the irregular 3D shapes and densities. Because of this, their use in interactive terrain specification, 

generation and rendering is limited. For this reason, algorithms working on tetrahedrons are not 

discussed further in this report. 

 

Voxels 

  Voxels are values on a regular 3D grid. Like tetrahedrons, voxels are volume based. So, creating 

holes, overhangs and caves is relatively easy. However, the amount of local detail is limited by 

global resolution of the regular grid. Also, the same resolution is present (and takes up memory) 

where less resolution is needed. Because of this, voxels are generally memory inefficient. 

Furthermore, rendering voxels is generally less efficient than rendering triangle surfaces on today’s 

polygon-based hardware accelerated video cards. Therefore, only few games actually use voxels. So, 

like tetrahedrons, voxels are not relevant enough to be treated in this report. 

 

 Irregular topology Regular topology 

Solid Tetrahedrons Voxels 

3D surface Irregular mesh Regular mesh 

2½D surface  Heightfields 
 

TABLE 3.1   Types of terrain geometry specification 
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Irregular Meshes 

 Irregular meshes are surface based, have flexible topology and might have varying densities of 

vertices. Although ideal for surface specification, the implementations of high-level modeling tools 

are more complex than implementations of equivalent tools for regular mesh representations. 

Rendering irregular meshes at full resolution is well supported by hardware. However, terrain 

rendering often requires different LOD (level-of-detail) levels at different parts of the mesh to render 

terrain at full resolution near the camera while rendering a coarser mesh further from the camera. 

Accomplishing this for irregular meshes is generally much more complex (and much more compute 

intensive) than for regular meshes. This is also true for collision detection and response. Both of 

these issues are serious drawbacks in computer games because almost every 3D game needs fast 

level-of-detail schemes and collision detection to be able to run at real-time speeds. Because of this, 

irregular meshes are often only used for objects like characters and trees, where it is generally 

sufficient to control the level-of-detail for the object as a whole and only require approximate 

collision detection.  

 

Regular Meshes 

 Having a regular (grid-like) topology greatly reduces the complexity that is coupled with irregular 

meshes. Regular meshes are powerful enough to model overhangs and have varying vertex 

densities, but do not allow specification of arches, connected tunnels or other features that require 

holes in the surface geometry. Also, most irregular mesh algorithms (procedural generation, editing, 

level-of-detail and collision detection) can be simplified and optimized for regular meshes. For 

applications where heightfields are not sufficient because overhangs are needed, regular meshes 

might be a good choice.  

 

Heightfields 

 Although the least powerful, most computer games use heightfields to represent terrain. A 

heightfield (also called heightmap, (digital) elevation map or DEM) represents a discretized height 

function of 2D coordinates on the horizontal plane, using height samples at regular discrete 

spacing. A mesh of (vertically displaced) triangulated square quadrilaterals is normally used as its 3D 

representation, but other topologies are sometimes used also. Rendering and other relevant 

techniques have been optimized for heightfields. Also, heightfields can be stored very compactly, 

because only data for the vertical axis needs to be stored.   

 

 Because heightfields are discrete functions of 2D space, they can be stored, visualized and even 

edited as grayscale images. As a 2D grayscale image, the greyvalue represents the local height. 

Editing techniques for heightfields and digital images are therefore interchangeable. By convention, 

the maximum altitude is represented by pure white and the minimum altitude by black. 

Heightfields of considerable detail are publicly available for planet Earth. These can be downloaded 

and used as a reference or a starting point for anyone interested. For example, see 

http://library.usgs.gov.  
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 Another advantage of heightfields is the ease of texture mapping. A simple vertical orthographic 

projection of a detailed texture onto the heightfield is generally sufficient. See the next paragraph 

for an explanation of the term texture. However, when a heightfield contains very steep areas, a 

simple vertical projection leads to an uneven distribution of texture resolution. Then, a more 

advanced texturing technique might be required to prevent the otherwise uneven distribution of 

texture resolution from becoming noticable. Readily available satellite photographs can be used as 

texture images, which can be found online for the whole planet. For example, see 

http://www.truearth.com/.  

 

 When supported by the engine, heightfields can be replaced locally by more powerful 

representations (e.g. regular meshes) where more resolution or geometry like overhangs or arches 

is required. For example, see [GAMI01] for a 3D displacement mapping technique to create 

overhangs with heightfields.  

 

 Because of the overall advantages, heightfields are still the most common way to specify terrain 

for real-time 3D applications. Consequently, this report has limited its geometry-related topics to 

the use of heightfields. Literature can be found on regular heightfields that are either based on 

quadrilaterals, triangles or hexagons. For example, see [DIXO94] for procedural terrain generation 

techniques for different topologies. However, most literate assumes a quadrilateral structure and, 

moreover, almost all applications use regular quadrilaterals, also known as quads. For this reason, 

heightfields mentioned in this report are assumed to be based on regular quadrilaterals, unless 

explicitly stated otherwise.   

 

 

3.2 Texturing 

 To render the terrain geometry, all surfaces have surface properties assigned to them. These 

properties consist of local mapping parameters (i.e. the texture mapping) and a shader. The shader 

uses the local parameters, the camera direction, the local geometry and possibly other input images 

(called textures) to calculate the color of a screen pixel. Surface shading might be as simple as 

outputting an evenly lit projected texture on a surface or as complex as procedurally generating 

animated natural phenomena (e.g. rendered reflective caustics of a water surface). The rendering 

process of shading surfaces can be hardware-accelerated by today’s high-end desktop computers. 

 

 Besides creating the terrain geometry, designers also need to assign these surface properties to 

different areas (e.g. an image of rocks in one place and grass in another).  This report introduces the 

reader to common texturing techniques that can be found in current applications and discusses a 

texturing technique called texture splatting in detail in Chapter 8. 
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3.3 Foliage Placing 

 Although object placement is supported by most level design tools, placing foliage (modeled 

grass, bushes, trees, etc.) that looks natural can be tedious if a level designer is creating areas with a 

lot of vegetation. The distribution density of foliage in the real world depends on the many factors 

including soil, temperature, humidity, slope, height and even on other species of flora in the area. 

Having powerful tools that can place vegetation while considering (some of) these factors greatly 

simplifies the process of natural and balanced placement of different types of vegetation. This is 

discussed in Chapter 9. 
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4 Procedural Heightfields 
 In the following four chapters, algorithms are discussed that are related to generating and editing 

heightfields, the most common representation of terrain geometry. This chapter discusses 

procedurally generating heightfields. 

 

 

4.1 Procedural Synthesis 

 Procedural synthesis or generation is the term used for techniques that create content 

algorithmically.  These algorithms do not need to be physically correct, elegant or deterministic. 

They have two advantages in the field of computer graphics. One is the smaller storage 

requirement. The code needed for procedural algorithms only takes up a fraction of the storage 

space that is required to store the large (or even infinite) amount of detail it can output. The other 

advantage is design. Whereas handcrafted data is generally only used once, a carefully designed 

parameterized algorithm could be reapplied many times to generate varied output of comparable 

quality. On the other hand, design through the use of procedural algorithms can be complicated if a 

specific result is desired that cannot easily be expressed in the exposed parameters. This 

disadvantage can partly be alleviated by the techniques discussed in Chapter 7. 

  

 Generating content through procedural algorithms has proven to be fruitful in fields like the 

generation of plants [PRUS90], cities [PARI01], clouds [VOSS89], complex (fractal) implicit surfaces 

[PERL89], texture generation [PERL85] and heightfields [MAND82]. Because procedural techniques 

are very promising in the field of design, a considerable share of this report is dedicated to 

procedural techniques that are directly or indirectly related to terrain generation and foliage 

placement. This chapter discusses procedural algorithms related to the generation of natural 

heightfields. 

 

 

4.2 Brownian Motion Fractals 

 The first person who noted mountain-like properties of a mathematical process was Mandelbrot. 

In [MAND82] he observed the similarity between a trace of the one dimensional fractional Brownian 

motion over time and the contours of mountain peaks. Extending this idea to two dimensions 

created a ‘Brownian surface’ resembling a mountainous scene. This Brownian process was later 

generalized to fractional Brownian motion (fBm) surfaces with a 1 / ƒβ power spectrum. β is called 

the spectral exponent and is directly related to the fractal dimensionality. Although mountains do 

exhibit some self-similarity, the formation or shape of mountains is not (known to be) quantitatively 

connected to fractals [LEWI90]. But as a descriptive model, this does not have to be an objection to 

use it to approximate natural terrain.  

 

 FBm surfaces do posses some features that visually distinguish them from real mountainous 

terrain. The increments of an fBm process have the property of being isotropic and stationary, 
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creating terrain that is statically invariant under translation and rotation. This will result in terrain 

that looks too homogeneous when compared to mountainous areas. Also, fBm surfaces have no 

local spatial relationship between amplitudes of different frequencies. Whereas natural scenes 

clearly have, as mountain tops are on average locally rough and valleys are locally smooth. Even so, 

fBm models are still the basis for many procedural terrain generators [MUSG93, p. 33]. 

 

 By definition, fBm is the integral over time of increments of a pure random process, also called a 

random walk. This stochastic process can be synthesized by summing over a basis function at 

multiple discrete frequencies with different amplitudes to create its characteristic 1 / ƒβ power 

spectrum. Examples of possible basis functions are band-limited noise functions and sine waves. 

Varying the basis function and power spectrum has proved to be a powerful method to generate 

landscapes. Because natural terrain is not per definition best approximated by an fBm surface, 

exploring different variations that do not yield a true fBm surface, but do have some fBm-like 

qualities can yield better (more natural) results. Also, approximations can be calculated in several 

different ways. Most terrain generating applications are based on one of the approaches discussed 

below. 

  

 

4.3 Fractal Synthesis 

 One possible implementation of creating an fBm surface involves the displacement of a plane by 

summing over the effect of many independent random Gaussian displacements (faults, or step 

functions) with a Poisson distribution. This was originally employed by B.B. Mandelbrot [MAND82] 

and R.F. Voss [VOSS85] to create the first procedural landscapes.  

 

Poisson faulting 

 ‘Fault formation’ and ‘particle deposition’ are two variants of Poisson faulting. Fault formation is 

introduced in [KRTE01] and is illustrated in Figure 4.1. Faults are created by repeatedly displacing 

the heightfield values at one side (i.e. halfspace) of a randomly chosen line through the heightfield 

by some amount. This process is repeated many times while the amount of displacement per 

iteration is slowly decreased. Because the result might still be too rough and aliased afterwards, a 

low-pass filter is normally applied as a final step. 

 

 After 4 iterations  After 64 iterations  After 64 iterations and filtering  
 

 

 

 

 

 

 

 FIGURE 4.1   Creating a fault formation heightfield. Higher areas are lighter  
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 Fault formation can create elongated mountain ridges and faults. However, most fine detail is lost 

because of the low-pass filtering. Also, the steepness of faults is directly related to the parameters 

used for the low-pass filter. Furthermore, many iterations are necessary to create a reasonable 

complex landscape. Creation is mostly fill rate limited because, on average, half the height values 

are updated for each iteration. It follows that this algorithm has an O(n3) work complexity, where n is 

the width or height of the heightfield (expressed in number of vertices) and the number of 

iterations is related to n. Because of these drawbacks, this technique is seldom used in commercial 

heightfield applications. One of its merits is the applicability of this idea to primitive shapes other 

than vertically displaced planes (i.e. heightfield), which might be difficult to do with other 

techniques. For example, [ELIA01] discusses fault formation on spheres. For a more elaborate 

discussion of fault formation, see [SHAN00].  

 

 Another type of Poisson faulting is called particle deposition, which 

involves a simple simulation of dropping particles on a flat plane. 

When a dropped particle touches the heightfield, it will ‘roll’ further 

downwards until a local minimum is reached and there it will increase 

the value of the heightfield with a small value Δ. See Figure 4.2. When 

enough particles are dropped, the produced pattern will (somewhat) 

resemble viscous fluid (e.g. lava). Because two adjacent heightfield 

elements can only differ by Δ, the maximum steepness depends on Δ 

and the heightfield grid spacing. This ‘roll’ simulation is a very crude approximation of thermal 

weathering (See Section 7.3). The shape of the terrain can be controlled by changing the drop 

pattern. This technique is primarily suited for creating volcanic terrains. Because of its local control 

and simple implementation, this technique might be useful for interactive editing. 

 

Midpoint Displacement 

  Introduced by Fournier et al. [FOUR82], midpoint displacement has long been the preferred 

technique to efficiently generate terrains. Heightfields are created by recursively subdividing (i.e. 

tessellating) a heightfield mesh and randomly perturbing all new vertices. When the perturbation 

has a Gaussian distribution and a standard deviation of 2-ℓH, the result will be an approximation of 

an fBm when ℓ is the subdivision level and H is the self-similarity parameter in the range [0, 1]. See 

the paragraph on noise synthesis on page 17 for more information on the relation between fractal 

terrain roughness and H. All midpoint displacement schemes have complexity O(n2), n being the 

width of the (typically square) heightfield.  Because the amount of calculation per vertex is also very 

limited, midpoint displacement schemes are very efficient. 

 

 Different subdivision schemes have been devised for different mesh topologies. [FOUR82] used a 

triangle subdivision that involves interpolating between the two vertices. Mandelbrot introduced a 

subdivision scheme specifically for hexagon meshes [MAND88]. However, these topologies are 

seldom used in terrain specification and will not be discussed in this report. 

 

 
FIGURE 4.2   Flow simulation in 
particle deposition 
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  The widely used diamond-square scheme for quadrilaterals was also presented in [FOUR82]. This 

two-phase algorithm subdivides a regular square grid at any level by first calculating and perturbing 

the (new) exact midpoints of each set of four nearest neighbors that together form a square. Then, 

another set of vertices is interpolated between each set of four nearest neighbors that together 

form a diamond (two of which were calculated at previous levels and two were calculated in the 

phase 1 of this subdivision level) and is perturbed. This will create a new regular grid of 

quadrilaterals. See Figure 4.3. 

 

 The diamond-square scheme creates visible 

anisotropic artifacts along the (eight) directions of 

interpolation. The square-square scheme presented in 

[MILL86] subdivides a regular mesh by using its ‘input’ 

mesh as a regular mesh of control points for a 

biquadratic uniform B-splines interpolant. This results 

in less visible anisotropic artifacts. A disadvantage of this interpolation scheme is the smaller size of 

the mesh after each subdivision step. Also, the fact that the resulting surface generally doesn’t go 

through the set of control points, but only approximates them, might be a drawback for some 

applications. 

 

  Midpoint subdivision has been used in many simple terrain generation applications. It is generally 

easy to understand and implement. Furthermore, it is very efficient if a whole patch needs to be 

subdivided and stored in memory. For example, in square-diamond subdivision, each terrain vertex 

needs only to calculate one interpolation and perturbation, whereas most other synthesis 

techniques (see next paragraph) need many interpolations. But because of its nested structure, this 

method is less suitable for ad-hoc local evaluation and only works on heightfields of 2k x 2k vertices. 

  

  The principle of interpolating values of neighboring vertices and adding a perturbation was 

extended to Generalized Stochastic Subdivision in [LEWI87]. There, a larger neighborhood, together 

with an autocorrelation function for each subdivision level, is used to allow creation of a mix of 

stationary (noisy) and non-stationary (periodic) patterns. Although flexible, it needs many more 

parameters than the methods above. For this reason, most terrain generating applications do not 

support generalized stochastic subdivision. However, it might have some limited use in creating 

terrain types that are hard to create with other techniques, e.g. (periodic) sand dunes.  

 

Fourier Synthesis 

 Fourier synthesis can be applied for terrain generation as follows: First, the 2D Fourier transform is 

calculated of a random Gaussian white noise heightfield. Secondly, the noise in the calculated 

frequency domain is multiplied with a pre-designer filter to create the desired frequency spectrum. 

Lastly, the multiplied result is transformed back to the spatial domain using the inverse Fourier 

transformation. When the right frequency spectrum is chosen, an fBm process is approximated 

[VOSS89]. An obvious advantage of this approach is the exact control over the frequency content. 

      a)            b)             c)             d)            e) 

 
FIGURE 4.3   Square-diamond midpoint displacement. b) 
and d) are intermediate results after applying the first 
phase. c) and e) applied phase 2. From [OLSE04] 
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Disadvantages are the periodicity of the final surface and the O(n2 log n) complexity of 2D FFTs. Also, 

any heterogeneous extension for local spatial control of detail during construction is less 

straightforward than for noise synthesis (see below).  

 

 

Noise Synthesis 

 Noise synthesis is the iterative summing over band-limited noise functions. The noise functions 

approximate a band-limited sum of frequencies with random amplitude and phase. By calculating a 

weighted sum of 2D noise functions of different band-limited frequency ranges, any power 

spectrum can be composed, including a 1 / ƒβ spectrum, approximating an fBm surface.  

 When ( )G t is the Fourier transform of a function g(t), 
1

( )
t

G
c c

 is the Fourier transform of ( )g ct . This 

means that when the input of a band-limited noise function N is scaled by (a positive) c, the 

frequency spectrum of N is scaled by 1 / c. So, having just one band-limited noise function and 

scaling its input and its output will create another band-limited noise function with a scaled mean 

frequency. Noise synthesis can therefore be written as: 

λ λ
=

= ∑
max

max
min

min

( , ) ( , )
L

L l l l
L

l L
H x y w N x y  

  Here, l represents a detail level and λLmin and λLmax represent the largest resp. smallest scale level any 

band-limited detail should be visible at. This means that Lmax - Lmin +1 is the number of summed noise 

functions. Increasing the number of calculated levels increases the total range of frequencies 

covered at the cost of extra computing power. λ, called the lacunarity, is the scale between the 

mean frequency of each of the successive noise levels. Increasing the lacunarity will increase the 

gaps between the separate noise evaluations, creating an uneven distribution of represented 

frequencies, but fewer levels will be needed to cover the same total frequency range. Somewhat 

like the subdivision scale of midpoint displacement, most noise synthesis implementations use λ = 

2, or a number very close to it, as the optimal tradeoff between accuracy and speed. As a result, the 

mean frequency of the noise function is roughly doubled at each level. Because of this doubling of 

frequencies, levels are also called octaves, borrowed from sound theory. The constant w controls 

the roughness of the synthesized result and can be written as a function of λ and the spectral 

exponent β, introduced earlier [MUSG93, p. 37]. The relation between these three parameters is as 

follows:  w = λ-β/2. Often, the terrain roughness is specified by the self-similarity factor parameter H, 

with β = 1 + 2H. The fractal dimension Df is 3 - H. To qualify as a fBm, H must be in the interval [0,1]. 

This means the fractal dimension lies between a 2D surface and a 3D volume (assuming that an 

infinite amount of levels would be calculated). True (non-fractional) Brownian motion has a 1 / ƒ2 

power spectrum and has therefore a fractal dimension Df  of 2½. See Figure 4.4. 

 

 The actual noise function can be constructed in different ways, each having a different 

characteristic band-pass quality and construction speed. An overview of these functions is given in 

Chapter 5. 
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  The above formula can be generalized to create more types of terrains by allowing a function to 

transform each noise octave before it is added: 

λ λ
=

= ∑
max

max
min

min

( , ) ( ( , ))
L

L l l l
L

l L
H x y w T N x y  

  The turbulence function T(n) [PERL89] is one of the first algorithms to explore the possibilities of 

this generalization by defining T(n) as abs(n). Taking the absolute value of [-1, 1] noise folds it at each 

zero crossing, creating discontinuities and doubling the number of (positive) peaks. This creates 

more billowy, turbulent, cloud-like fractal landscapes. See Figure 4.5. Another variant is T(n) = 1 - 

abs(n). This transform has the opposite effect, creating ‘ridges’ at the discontinuities around n = 0. 

The results created with non-linear functions are still fractal, but do qualify as fBm surfaces. 

 

 H = 1 :  Df = 2, w = ¼√2  H = ½ :  Df = 2½, w = ½  H = 0 :  Df = 3,  w = ½√2  

      

 

 FIGURE 4.4   Heightfield of different fractal dimensions. Perlin noise  

 

 

 

  Of course, many other functions might prove useful for different types of terrain. One flexible way 

to give the user the freedom to experiment with this would be to present a simple input/output T(n) 

mapping function as an editable (e.g. drawable) curve. 

  

 Local properties of real terrain are not stationary (i.e. statistically translation invariant). Foothills are 

smoother, while mountain tips are more jagged. The midpoint displacement and noise synthesis 

approaches can be modified to simulate this observation by controlling the local statistics. To do 

this, T can be defined to depend on the sum of lower frequency octaves, i.e.:  

 fBm :  T(n) = n  Billowy :  T(n) = abs(n)   Ridged :  T(n) = 1-abs(n)  

      

 

      

 

 FIGURE 4.5   Heightfields with one octave (top row) and eight octaves (bottom row) of transformed noise. Perlin noise, H = ½  
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−= ⋅1max
min

( ) ( ( , ))L
LT n G H x y n  

  Since higher octaves will have less amplitude (the factor wl), the sum of all lower octaves 
−1max

min

L
LH can generally be interpreted as an approximation of max

min

L
LH . When G(n) is a function that is 

positively correlated to n, T(n) will have the effect of locally increasing the noise amplitude at higher 

altitudes. This has the desired effect of creating rougher terrain (with a higher fractal dimension) at 

high altitudes and smoother terrain at low altitudes. This type of fractal is called a heterogeneous 

multifractal. Another way of creating heterogeneous multifractals is by multiplying multiple noise 

octaves instead of summing them.  

 λ λ
=

= +∏
max

max
min

min

( , ) ( ( , ))
L

L l l l
L

l L
H x y w O N x y  

 Here O is an extra offset parameter that is somewhat 

reciprocally related to the roughness of the result. The 

actual range of output values for this type of 

multifractal is highly unpredictable. Therefore, the 

output range needs to be measured after creation, so 

it can be rescaled to a predictable range (e.g. [0, 1]). 

See Figure 4.6 for an example. In [EBER03, p. 498-506], 

different variants of these multifractal techniques are discussed in detail. 

 

  The octave transformation function T(n) can also be made to depend on other inputs. For example, 

the function T(n) = M(s x, s y) n, with s being a scaling factor and M(u, v) being the local greyvalue of a 

2D image at coordinate (u, v). Here, T(n) is used to control the local roughness by looking up an 

amplitude multiplier from another image. The 2D image itself can also be a procedurally generated 

fractal. This is just one example of cascading, a powerful concept where a procedural algorithm uses 

other procedural algorithms or complex handcrafted work as input parameters. This idea fits nicely 

with layers and flow charts, discussed in Section 2.5. 

 

Range Mapping 

  Another way to create more varying landscapes is to transform the output of H as a post-

processing step :  

 

′ =( , ) ( ( , ))H x y P H x y  

 

  To let P(z) be as independent as possible of the exact parameters used to construct H, H is generally 

rescaled to the range of [0, 1] as an intermediate step.  

 

 Two functions that are often used for this type of mapping are the bias and gain [PERL89] 

functions: 

 
FIGURE 4.6   Height-dependent high frequencies 
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 These functions have the following useful properties: 

 

 

 These simple properties make them transparent and intuitive to a user. See Figure 4.7 for examples 

of these functions, together with their effect on a heightfield. 

 

 

Domain Mapping 

  Range mapping transforms a function’s output. Analogously, domain mapping transforms a 

function’s input before the function is evaluated. Besides obvious uses like scaling and rotation, 

input perturbation is a valuable and flexible tool when defined as: 

 

 
′ =

= + +1 2

( , ) ( ( , ))
( , ) ( ( , ), ( , ))

H x y H P x y
P x y x N x y y N x y

 

 

where N1 and N2 can be any (scaled) noise function. As a result, P perturbs the input coordinates of 

H. See [EBER03, p. 450] for details. 

  

  For example, a noise synthesized heightfield that used a Voronoi noise base function (see Section 

5.4) will contain many straight ridges. By applying a domain mapping with N1 and N2 being 

(differently translated, rotated and scaled) Perlin noise functions, interesting and natural looking 

curves and shapes appear. See Figure 4.8. This is another example of cascading different functions 

to increase the visual complexity of the result. 
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Original:  

 
 

‘Glacier’ effect:   
P(z) = biasb(z), b < ½ 

 
‘Canyon’ effect:  

P(z) = biasb(z), b > ½ 
 

‘Midland’ effect: 
P(z) = gaing(z), g < ½ 
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 FIGURE 4.7   Heightfields after post-processing. Perlin noise, H = ½  
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4.4 Erosion 

  In [CHIB98] Chiba et al. describe an algorithm that 

takes an alternative approach to fractal synthesis by 

physically simulating fluvial (water) erosion.  This 

algorithm iterates a number of times over two 

subsequent phases. In the first phase, several erosion-

related data fields are calculated from the current (and 

initially flat) heightfield. Then, the data fields are used 

to simulate erosive processes on the heightfield. The data fields calculated in the first step are a 

water quantity field W, a water velocity vector field V and a collision energy field C, which are all 

discretely sampled using regular grids similar to the terrain heightfield. These fields are estimated 

using a time-step simulation of many water particles. The water particles are dropped at each grid 

point and move downhill. At every simulation step, all cells of the data fields that the particles pass 

are updated. When a particle moves into a grid cell which is steeper, the length of the local vector in 

V is increased. When a particle enters a grid cell which is less steep, the local length of V is decreased 

and the lost kinetic energy is added locally to the collision field C. W represents the total amount of 

water that passed through each cell. When all water particles moved outside the terrain heightfield 

or do not have any kinetic energy left, the first phase is completed. The second phase uses W, V and 

C to calculate how much sediment will be dissolved, transported and deposited, based on simple 

empiric rules. See Figure 4.9 for an example of a terrain created by this method. 

 

  Physics-based terrain erosion algorithms, like the algorithm described above, often need many 

compute-intensive iterations before the result becomes valuable, making them generally (much) 

slower than the fractal synthesis techniques described above. F.K. Musgrave et al. [MUSG89] 

describe a two-pass approach as a combination of the two different approaches, which is now 

supported by most of the advanced terrain generation applications. First, one of the above fractal 

synthesis techniques is used to create a first approximation. Then, an additional erosive pass is run 

on this approximation. Depending on the type, strength and number of iterations of the erosion 

process, the erosive pass carves out small gullies and river beds and creates flat sediment planes 

and talus slopes. When parameters for this second pass are tweaked by a designer, it’s unnecessary 

to recalculate the result from the first pass every time. Therefore, caching the intermediate 

heightfield might be appropriate. Having such a clear distinction between these phases even allows 

 Original heightfield without domain mapping  Heightfield with domain mapping  

     
 FIGURE 4.8   Voronoi heightfield without (left) and with (right) noise distorted input  

 
FIGURE 4.9   Result of 100 iterations of fluvial water erosion. 
From [CHIB98] 
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a complete separation of the procedural fractal generation step and the erosion step. Hence, it 

makes sense to offer erosion as an independent tool to the user. Furthermore, having erosion as an 

interactive tool increases the flexibility to designers who might need to apply erosion only locally. 

This is why this report further discusses erosion as an editing tool in Section 7.3 

 

 

4.5 River Networks 

 One of the drawbacks of all fractal synthesis techniques discussed so far is the lack of explicit river 

networks in a terrain. Furthermore, adding realistic rivers to a terrain after the terrain already has 

been generated with one of these techniques has proven difficult. Two alternatives will be 

discussed here that create river networks before the final heightfield is calculated. 

 

 In [KELL88] A.D. Kelley et al. describe a procedure to 

recursively create drainage networks first that are then 

used to create the topography of the terrain. The algorithm 

iteratively inserts tributaries into the drainage network 

using empirical rules, creating a fractal network of streams. 

Then, a (smooth, non-fractal) surface is fitted by a surface 

under tension technique. See Figure 4.10. Although this 

surface might afterwards be distorted to create rougher 

terrain, the distortion cannot be too strong, as streams 

might otherwise end up flowing uphill.  

 

  In [BELH05] F. Belhadj and P. Audibert discuss the idea of modeling outlines of mountain ridges 

using pairs of 2D Gaussian-shaped particles moving in opposite directions. These particles are 

randomly translated using fractional Brownian motion. After settling, the trails made by these 

particle pairs are interpreted as rough outlines of mountain ridges. Then, virtual water particles are 

placed at these ridge lines and simulated to roll downhill. The trail of these water particles is then 

interpreted as the shape of a river network. At this point, the heightfield is partly filled with fine 

ridge lines and river trails. By extending the idea of diamond-square midpoint displacement, all 

other values of the heightfield are recursively interpolated. See Figure 4.11.  

 

 

 
FIGURE 4.10   Drainage network and fitted (non-
fractal) surface. From [KELL88] 

 Heightfield after ridge and water particle simulation  Heightfield after midpoint displacement  

     
 FIGURE 4.11   Fractal landscape with river network. From [BELH05]  
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4.6 Preliminary Discussion 

 When attempting to compare the techniques discussed in this chapter, it is evident that the 

different types of advantages and weaknesses of the algorithms do not allow for simple ranking. 

Because the types of projects that require outdoor terrain can vary wildly, much of a tool’s 

usefulness depends on whether it is appropriate for a project’s style and requirements. As described 

in Section 2.7, offering a designer a wide variety of tools to choose from allows him to pick the best 

tool for the job, as long as the toolset is consistent and intuitive. Therefore, expensive (i.e. compute 

intensive) specialized methods may still have a limited area where these methods are preferred over 

a method that is generally both better and faster. Supporting a limited number of more expensive 

methods might therefore be beneficial to the designer. This makes it difficult to compare these 

algorithms quantitatively. 

  

 However, offering all possible algorithms and options to a designer is generally a bad 

methodology. This would clutter the interface to the user while offering too many overlapping 

functionality. As a preliminary conclusion, noise synthesis seems to be the best general fractal 

technique because of its speed, results and flexibility. This is not to say that other techniques are 

irrelevant as some might be offered in addition. Below, noise synthesis is compared to the other 

techniques using a number of different criteria.  

 

 The complexity of noise synthesis when using a lattice noise basis function is O(n2), which (in its 

limit) is constant with respect to the number of vertices in a square heightfield. The constant 

depends on the number of detail levels calculated. Perlin noise, the basis function that is most used, 

can be evaluated without requiring explicit information from distant vertices (midpoint 

displacement) or other random features (Poisson faulting). This last property has the advantage of 

allowing (practically) infinite seamless growing of the covered area of a heightfield. This is very 

helpful if it is later decided that a heightfield should be larger than initially anticipated or a domain 

mapping distorts an area such that height information that would otherwise lie outside the 

evaluated area is now visible. Another advantageous property of noise synthesis is the flexibility to 

evaluate areas of arbitrary shape and size. All techniques other than noise synthesis and Poisson 

faulting work best when (or even require that) a square of a power-of-two size is evaluated. Noise 

basis functions are described in more detail in Chapter 5. 

 

 Parallelism is another important factor and is related to the possibility of evaluating samples 

independent of values of distant vertices. Recent desktop PCs have a graphical processing unit 

(GPU) powerful enough to be used as a general-purpose parallel SIMD-like data processor. All above 

fractal synthesis techniques can be implemented to execute on the GPU to benefit from this 

parallelism. But the attainable speed-up would heavily depend on the complexity of the specific 

algorithm and the dependency between the required data structures. Because the execution speed 

of terrain generation and editing tools is critical in the design loop, as explained in Section 2.2, it is 

important to be able to use the extra processing power offered by GPUs efficiently. Typically used 
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noise functions (e.g. Perlin noise, Section 5.2) can be evaluated completely independent of distant 

sample read-backs and has few data dependency relations. Therefore, this noise function will 

benefit greatly from this parallelism. Likewise, midpoint displacement might benefit from 

hierarchical execution on the GPU using intermediate heightfield ‘textures’, doubling in size at each 

subdivision level. However, midpoint displacement is only efficient if (and only if) a full evaluation of 

a square heightfield is calculated. Estimating the speedup that can be attained through the use of a 

GPU for the different algorithm is difficult, because no papers or terrain generating applications 

were found that use the (full) capabilities of the GPU. But because noise synthesis (or, more 

specifically, Perlin noise construction) has been shown to execute efficiently on the GPU, it is safe to 

say that none of these other approaches would gain preference over noise synthesis.  

 

 Other building blocks that can be used for noise synthesis, like Voronoi noise, are more expensive 

to evaluate and might therefore be less applicable in a general sense. But, offering other noise 

building blocks in a toolkit offers the designer the freedom to choose whether or not to use it. This 

fits nicely with the idea of offering different modular building blocks, function mapping and 

cascading options to let designers compile their own heightfields and reusable functions. When the 

interface of this modular design is made to be as consistent and transparent as possible, this idea 

becomes both powerful and intuitive. Because noise synthesis is very flexible and powerful, other 

fractal synthesis techniques like Poisson faulting, Fourier synthesis and midpoint displacement may 

not need to be incorporated in a toolset. 

 

 By separating erosion from the creation of procedural terrain algorithms, and allowing erosion to 

be used as a post-processing step as discussed on page 21, erosion can be applied to any terrain.  

However, erosion techniques that do not adapt a separately created procedural terrain, but create 

the whole terrain in one step like discussed in [CHIB98], are relatively inflexible and generally not 

worth considering. See Section 7.3 for a discussion of different post-processing erosion algorithms. 

  

 Non-fractal techniques like discussed in Section 4.5 might also be made available to designers. 

However, the two algorithms presented in that section are of limited quality. The first creates a 

good looking network of rivers but is not very good in creating natural terrain details. The second 

algorithm suffers from the same directional artifacts as regular midpoint displacement. However, for 

the creation of terrain types with a lot of rivers, they might still be the preferred choice. 
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5 Noise Basis Functions 
 As described in Section 4.3, generating procedural content through noise synthesis is 

accomplished by adding band-limited noise functions. Varying the added frequencies (scales) and 

the characteristics of the noise function will have a large impact on the result. For this reason, 

different noise functions have been developed as basis functions, almost like building blocks, for 

the construction of procedural content. For a synthesized result of a specific power spectrum (e.g. 

fBm surfaces), the ideal noise function would produce narrowly band-limited, stationary (translation 

invariant) and isotropic (rotation invariant) noise. But as a building block for artistic or natural 

effects, other ‘noise’ types might be preferred in order to achieve a desired look. This chapter 

discusses different noise basis functions for use in noise synthesis-based terrain generation.  

 

 

5.1 Fourier Synthesis 

 Fourier synthesis was already discussed in the previous chapter, but separating it in multiple band-

limited noise building blocks allows it to be used for noise synthesis, adding to its flexibility. Band-

limited noise is easy to define in the frequency domain. The amplitudes of the frequencies are 

randomly chosen using a probability distribution of the desired band-limited power spectrum. 

Then, an inverse Fourier transform is performed to get the random noise in the spatial domain using 

either DFT (Discrete Fourier Transform) or FFT (Fast Fourier Transform) [COOL69]. FFT can be more 

efficient than DFT when a large ‘patch’ of noise evaluations is needed all at once (explicit 

construction). When only single samples are needed, DFT is preferred (implicit evaluation) [EBER03, 

p. 49]. However, calculating a FFT or DFT is relatively compute intensive, making Fourier synthesis 

less practical than alternatives.  

 

 

5.2 Lattice Noise 

 Lattice noise functions assign uniformly distributed (pseudo)random numbers at every point in 

space whose coordinates are integers, creating a regular lattice of random numbers. An 

interpolation scheme that uses the assigned random numbers of nearby neighbors at integer 

coordinates is applied to calculate the output value for an input coordinate. The interpolation 

scheme has the effect of a low-pass filter. And because the highest frequency of lattice noise is 

limited by the lattice density, lattice noise is band limited.  

 

 Depending on the application’s requirements, the random numbers assigned to every integer 

coordinate can either be precalculated and stored explicitly, or evaluated at request by hashing the 

integer coordinate to retrieve a random number. For the hashing technique, two 1D lookup tables 

are used. The H table is a precalculated random permutation of the set of all integers in the input 

domain of size n (typically a power of two). The V table is also of size n and contains random 

numbers in the range [-1, 1]. Then, a pseudo random value can be calculated by evaluating V( H( ( x + 

H(y) ) mod n ) ) in the case of a 2D integer coordinate [PERL85]. 
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Perlin Gradient Lattice Noise 

 Perlin noise is perhaps the most well known noise type, introduced in [PERL85]. Here, the random 

numbers at the integer coordinates do not represent the points through the noise function, but 

rather, gradients at these points. The returned value at all integer coordinates is per definition zero. 

All non-integer coordinates are calculated by interpolating between the gradients of the 2d closest 

neighbors at the integer coordinates, with d being the dimension of the coordinate space (two in 

the case of heightfields). For gradient noise, the V table contains random gradients which are 

random vectors uniformly distributed on the d-dimensional unit (hyper)sphere. 

 

 Perlin originally proposed using a linear interpolator [PERL85], but later proposed a cubic [PERL89] 

and quintic [PERL02] interpolation spline to achieve C1 respectively C2 continuity. Higher order 

interpolation is slightly more compute intensive but, depending on the application, can be worth 

the extra effort. See Figure 5.1. See [PERL02] and [PERL04] for a more elaborate discussion. The 

power spectrum of gradient noise has little low-frequency power and is dominated by the 

frequencies that are near to one-half (on an integer-spaced lattice). In other words, it is fairly well 

band-limited. 

 

 Linear interpolation (C0 continuity)  Cubic interpolation (C1 continuity)  Quintic interpolation (C2 continuity)  
 

 

 

 

 

 

 

FIGURE 5.1   Different gradient noise interpolation schemes 
 

Wiener Value Lattice Noise 

 Unlike gradient noise, value noise lets the random numbers assigned to the integer coordinates be 

the returned noise values at these points. Non-integer coordinates are calculated using an 

interpolation scheme. Like Perlin Noise, linear interpolation would result in visible ‘boxy’ artifacts. 

Interpolation in normally implemented using Catmull-Rom splines. This interpolation scheme needs 

more samples of the neighboring lattice points (4d neighbors for d-dimensional lattice space) than 

gradient lattice noise (2d neighbors). Value lattice noise has more power in the lower frequencies 

than gradient noise and is therefore less suitable as a band-limited noise octave. For more 

information on the value lattice noise, mixing value noise and gradient noise, and other lattice noise 

functions, see [EBER03, p. 67]. 
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5.3 Sparse Convolution Noise 

 Lattice noise can have axis-aligned artifacts. To prevent this, sparse convolution noise first places 

randomly distributed impulses [LEWI89]. Then, filtering is applied using a low-pass convolution 

kernel. The resulting noise power spectrum can be controlled by the filter kernel and is related to 

the kernel’s power spectrum. A common implementation of the filter kernel is a Catmull-Rom spline. 

The power spectrum of sparse convolution noise resembles a (scaled) power spectrum of value 

lattice noise. Even though convolution noise is of higher quality than lattice noise functions, it is (for 

the non-mathematical purpose of terrain generation) not worth the increased computing time. 

 

 

5.4 Voronoi Diagrams 

 Even Voronoi diagrams have been used as band-limited noise functions [WORL96]. Like sparse 

convolution noise, the first step in constructing this type of noise is picking random points as a 

Poisson process. Then, a sample’s value can be evaluated by calculating the weighted sum of the 

distances to the top d  closest neighbors. That is,  

 

( , ) d d
d

N x y w N R= −∑   

 

with N being the coordinate evaluated, Rd being the random point that is dth-closest to N and wd the 

weight for the dth-closest neighbor. See Figure 5.2 for examples of Voronoi noise that are 

interpreted as heightfields. Although Voronoi noise isn’t a very good approximation of band-filtered 

white noise, its average cell size can be controlled by the random point density. This makes it a 

noise building block of band-limited feature scale and, therefore, does have its uses in procedural 

(heightfield) noise synthesis. More natural shapes appear when combined (cascaded) with domain 

distortion functions. See Figure 4.8. 

 

 w = {1, 0, 0, 0, …}  w = {0, 1, 0, 0, …}  w = {-1, 1, 0, 0, …}  

       
FIGURE 5.2   Voronoi diagram ‘noise’ 

 

 Creating Voronoi noise is relatively compute intensive. However, the shape of its typical features is 

not easily approximated using less compute intensive techniques. For this reason, it might still be 

appreciated by designers to offer an option for Voronoi noise in a toolbox. 
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5.5 Preliminary Discussion 

 Because Perlin noise is fairly well band limited, has few artifacts and is fast to compute, it is 

currently the preferred choice of many applications that allow procedural creation of heightfields or 

other types of content (e.g. textures). Also supporting Voronoi noise can be helpful to create ridged 

mountains or other sharp-edged smaller features that are difficult to produce with other types of 

noise. When both of these techniques are available to designers, they create a sufficiently solid base 

to designs terrains with, when combined with the summing, distortion and mapping techniques 

discussed in Chapter 4.  
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6 Heightfields by Example 
 This chapter discusses an alternative idea for designers to generate heightfields. Instead of 

generating new terrain by tweaking a number of parameters, the designer is enabled to quickly 

generate new terrain that is similar to a selected area of already created terrain. A designer would 

have to select an example area (the exemplar) and start an algorithm that could synthesize similar, 

but not identical, terrain somewhere else (the destination area). See Figure 6.1. This would allow a 

designer to reproduce the properties of imported real-world or previously created features, without 

tweaking any of parameters that would otherwise be required for procedural tools to approximate 

the desired terrain properties. It also makes it possible to create new terrain based on scanned 

heightfields  (i.e. DEMs) of real terrain. Such a tool would fit nicely between low-level copying tools 

and purely parameterized procedural heightfield generation.  

 

 Exemplar input image    One possible output image  

 

 

  
Analysis and 

synthesis 

 

 

 

FIGURE 6.1   Texture by example synthesis. From [LEFE05] 
 

 A growing set of 2D image synthesis algorithms that can create new images from exemplar images 

has been developed in recent years. As explained in Section 3.1, heightfields have a direct relation 

to 2D images. This enables techniques that are aimed at 2D image synthesis to be interpreted as 

useful terrain creation techniques. So, using these techniques to synthesize heightfields is a natural 

extension. Note that this chapter adopts the 2D image-related terminology and uses the 2D 

example images from the original papers. Specifically, the words images and textures are used 

interchangeably and denote a 2D matrix of color or grayscale values. A pixel represents a local 

element of this matrix at an integer (x, y) coordinate (i.e. column-row pair).  

 

 This chapter only discusses a few of the many algorithms available. The quality of the results 

obtained from these algorithms can vary greatly. See Figure 6.2 for a visual comparison of a number 

of these algorithms for a scale-like exemplar image. It must be noted that the applicability of these 

algorithms depends on the type of texture that needs to be synthesized.  Algorithms that work fairly 

well for images that contain different types of features which have sharp edges could perform badly 

on relatively smooth textures (Figure 6.2, middle row) by creating unwanted seams. Likewise, 

algorithms that always create seamless results can create results of less quality for exemplar images 

that contained sharp-edged distinct features [ASHI01].   

 

 Terrain is generally smooth and contains only few or no extremely sharp edges. For this reason, 

only algorithms that are better at synthesizing seamless and smooth textures were chosen to be 

surveyed in this chapter. The first algorithm is one of the oldest texture synthesis algorithms and is 



Interactively synthesizing and editing virtual outdoor terrain  -  G.J.P. de Carpentier, 2007 30 

relatively easy to implement. The two subsequent algorithms describe variants of this algorithm 

designed to speed up the synthesis process. 

 

 But before going into the details of these algorithms, Laplacian and Gaussian image pyramids are 

explained in Section 6.1. Image pyramids are part of some texture synthesis algorithms and other 

so-called multi-resolution algorithms with the purpose of speeding up the algorithm and to be able 

to cope with features on multiple scales. For example, the multi-resolution blending technique that 

will be discussed in Section 7.4.2 uses multiple pyramids to blend different heightfields together.  

 

a) Exemplar input image  b) Heeger and Bergen [HEEG95].  

From [WEI00]. 

 c) Efros and Leung [EFRO99]. 

From [WEI00]. 

 

 

 

 

 
d) De Bonet [BONE97]. 

From [WEI00]. 

 f) Ashikhmin [ASHI01]. 

From [ASHI01]. 

 e) Zelinka and Garland [ZELI02]. 

From [ZELI02]. 

 

 

 

 

 
g) Wei and Levoy [WEI00]. 

From [WEI00]. 

 h) Nealen and Alexa [NEAL03]. 

From [NEAL03]. 

 i) Lefebvre and Hoppe [LEFE05] 

From [LEFE05]. 

 

 

 

 

 
FIGURE 6.2   The topleft image is the exemplar image used to synthesize all other images shown. The other two images on the top row show the 
result of algorithms that do not correctly copy the structure of this exemplar. The images on the middle row are created by algorithms that 
produce visible seams. The bottom row shows the result of algorithms that produce perceptually similar textures without visible seams 
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6.1 Image Pyramids 

 Comparing different image areas for the amount of similarity is part of all texture-by-example 

synthesis algorithms. But many images, including 2D heightfield images, have features on varying 

scales and, therefore, need different window sizes to use for their local similarity measurements. 

One way to detect all features is to use small, as well as medium and large windows for these 

measurements. But processing large windows is very compute intensive. Image pyramids [ADEL84] 

are used often instead. The idea of an image pyramid is not to scale the actual window size of an 

operation in order to be able to cover different scales, but rather to downscale the input image to 

multiple power-of-two scales and use these as inputs to an operator that uses a fixed-sized window 

instead. This idea is the basis for many multi-resolution algorithms. 

  

 The image pyramid assumes an input image of size 2n x 2n and constructs a pyramid of n+1 levels 

with a 2l x 2l image at level l, 0 ≤ l ≤ n. The image at level n is the original image. An image at level l 

can be constructed by downscaling (reducing) the image at level l+1 by a factor of two. A filter with 

a (small) fixed-sized low-pass kernel is convolved before every resolution reduction. This filter filters 

out all frequencies higher than half the sampling rate, as required by the Nyquist-Shannon sampling 

theorem, to prevent aliasing. Often, a small 5 x 5 kernel is used as an approximation to a 2D 

Gaussian kernel. For a faster, less accurate, implementation, a 2 x 2 averaging kernel is sometimes 

used. In effect, the different pyramid images can be seen as (scaled) approximations of low-pass 

Gaussian filtered images with successively doubled radii. For this reason, this type of pyramid is 

called the Gaussian image pyramid. The construction procedure is depicted in the top half of Figure 

6.3. See Figure 6.7 for an example of a Gaussian pyramid. 

 

 The images in the Gaussian pyramid are low-pass filtered images. However, the Gaussian pyramid 

can be processed further to create a band-pass filtered pyramid of images. This band-limited 

pyramid approximates the Laplacian of Gaussian (LoG), or simply the Laplacian, at different 

(successively doubling) scales, creating a decomposition into wavelets. The level 0 of the Laplacian 

pyramid is equal to level 0 of the Gaussian pyramid. The kth Laplacian layer, 1 ≤ k ≤ n, can be 

constructed by subtracting the (k – 1)th Gaussian layer from the Gaussian kth layer, after up-scaling 

(expanding) the (k – 1)th Gaussian layer to 2k x 2k. The interpolation scheme used for expanding can 

be chosen freely. Construction of the Laplacian pyramid from the Gaussian pyramid is shown in the 

bottom half of Figure 6.3. Note that the Laplacian pyramid allows lossless reconstruction of the 

original input image using n cascaded expand-and-sum operations, effectively summing over all 

Laplacian levels that are recursively rescaled to n x n.  

 

 The Laplacian pyramid is not used in this chapter, but it is used in many other computer graphics 

fields like data compression and multi-resolution editing. Multi-resolution editing of heightfields is 

discussed in Section 7.4.2.  
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FIGURE 6.3   Construction of the Gaussian and Laplacian image pyramid 

  

 

6.2 Explicit  Neighborhood Window Texture Synthesis 

 Returning to the topic of texture synthesis, a relatively intuitive and simple algorithm was 

introduced by Efros et al. that grows a new texture pixel by pixel [EFRO99]. This work models a 

texture as a Markov Random Field (MRF). Consequently, every pixel value depends statistically on 

the values of the neighboring pixels for a given neighborhood size. A neighborhood is defined as 

square window centered around its input pixel coordinate. This relation is strict in the sense that a 

pixel’s value is assumed to be independent of values of all pixels outside the neighborhood. Hence, 

the neighborhood window size is required to be of a size similar to an image’s features in order to 

effectively detect and reproduce its features and structure. Too small, and the structure is lost. Too 

large, and the synthesized textures contains features that might be too structured. See Figure 6.4. 

 

 
FIGURE 6.4   From left to right: The exemplar and four synthesized textures with a neighborhood window of 5, 11, 15 and 23 pixels wide, 

respectively. From [EFRO99] 
 

 To determine the value of the pixel at each coordinate p in the destination area D, the exemplar E 

is exhaustively searched for close matches of exemplar neighborhoods we(s) with the destination 
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pixel’s neighborhood wd(p). The amount of similarity between the pixels of two neighborhoods is 

measured by a similarity distance measure d. These neighborhoods are defined as square windows 

centered around a coordinate. There is no guarantee that a perfect match will be found (i.e. d = 0), 

because D might start off with areas already partly defined and, also, the algorithm introduces 

variations itself. A close match is defined as a pair of some s and some p with d( we(s), wd(p) ) < (1 + ε) · 

dmin, with dmin
 being the smallest similarity distance found between wd(p) and all we(s). See Figure 6.5. 

Ω(s) is the set of coordinates in E that have a closely matching neighborhood when compared to 

wd(p). Or, in mathematical notation: 
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 ε controls the maximum allowable quality of the elements in Ω(p), 

relative to the best match. Consequently, the set size of Ω(p) will 

grow with larger values of ε. A larger Ω(p) set creates less exact but 

more varying textures. A value of 0.1 is chosen for ε in [EFRO99].  

 

 The set Ω(p) contains coordinates of pixels in S that have a 

neighborhood that closely matches the neighborhood of D’s p. 

Hence, the (color) value at p is best set to one of the colors at the 

pixel coordinates in Ω(p). A histogram of pixel values is created 

from the pixel values at the Ω(p) coordinates. This histogram is then 

sampled uniformly or weighted by d to choose the value at p. 

  

 The similarity distance measure is taken to be a weighted sum of 

squared differences between all filled-in individual pixels of wd(p) 

and we(s) for some p and s. Pixels in a neighborhood that are not filled in yet are not considered in 

the distance measure. The weights are picked to resemble a 2D Gaussian kernel, centered around 

the neighborhood window’s center, to give differences between neighboring pixels near the center 

pixel more weight. Consequently, differences in local structures take precedence over distant 

structures.  

 

 The coordinate p is picked at each iteration from the set of all pixels in D that are not yet filled in. 

The coordinate p from this set that has the most pixels in its neighborhood in D filled in is selected 

to be filled in next. In effect, the texture is grown outward from areas that are already filled in. As an 

initialization step, a random pixel can be copied from E to D to function as a growing seed if D was 

initially completely empty.  

 

 The main advantage of this algorithm is its algorithmic simplicity and the decent quality of its 

results. Its main disadvantage is the time required to synthesize a new image, possibly taking 

several minutes to synthesize an image of a typical size (e.g. 256 x 256). It is most appropriate for 

 

 

FIGURE 6.5   Nine neighborhoods in E 
(bottom) that closely match the 9x9 

neighborhood in D (top) 
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textures that contain regularly sized features because of its fixed neighborhood window size. In 

some cases, this algorithm is known to grow garbage (areas of different structures, e.g. noise). Also, 

the quality of the result depends on the exact sequence of picked p coordinates. This is especially 

true when the algorithm is used to fill gaps in D instead of filling D completely. 

 

 

6.3 Multi-resolution Texture Synthesis 

 In [WEI00], several improvements to the previous algorithm are suggested in order to speed up 

texture synthesis. For one, it applies multi-resolution techniques to improve the image quality and 

to be independent of a user-selected neighborhood window size parameter. But first, differences in 

the traversal order and shape of the neighborhood window shape are discussed. 

  

 In contrast to the algorithm discussed in Section 6.2, this algorithm traverses all coordinates p in D 

using a fixed raster scan ordering traversal to synthesize D. Consequently, it can only be used to fill 

D completely, not to fill gaps in a partly filled D. D is treated to be toroidal, creating a texture that 

matches its opposite sides. This allows neighborhoods to ‘wrap around’ when pixels outside the 

boundary are needed. To create a random texture, the two rightmost columns and the two 

bottommost rows are pre-filled with noise to be used for the neighborhood matching at its 

opposite sides. Hence, by using an L-shaped 5 x 2½ neighborhood window, only these noise pixels 

and all already synthesized pixels will be used during similarity comparisons. See Figure 6.6. This 

change makes traversal and similarly comparison simpler without degrading then quality, when 

compared to a 5 x 5 implementation of [EFRO99]. 

  

 
FIGURE 6.6   From left to right: The 5 x 2½ L-neighborhood and the synthesized result at the first, the middle and the last iteration of the 

algorithm. Note that the red mask uses wrap around to look up a pixel at the opposite side when such a neighborhood’s pixel lies outside the 
image (left image). This wrap around is not visualized here. From [EFRO99] 

 

 While the previous algorithm uses a single user-defined neighborhood size, [WEI00] uses a 

precalculated Gaussian pyramid of E to synthesize a pyramid of D. During construction, 

neighborhoods in E and D are compared on multiple pyramid resolution levels simultaniously. As a 

result, features of all sizes are automatically detected. Starting with the lowest resolution image in 

the pyramid, the single-resolution synthesis process is applied similar to [EFRO99] in Section 6.2, 

now using the raster scan traversal and the L-neighborhood. The used distance measure simply 

compares the neighborhoods at that first level for both E and D. Because this level is a downscaled 
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version of the higher levels, the 5 x 2½ neighborhood would cover a much larger area on the 

original level, detecting much larger features. 

 

 Next, the subsequent higher-resolution layers in the 

pyramid are synthesized layer by layer, from coarse to fine. 

But instead of only using the 5 x 2½ neighborhood window 

at coordinates s and p at each of these levels, the similarity 

neighborhood is extended further with a 3 x 3 neighborhood 

window at each of the previously calculated coarser, lower-

resolution levels, accumulating their similarity distances. See 

Figure 6.7. The s and p coordinates for the current layer are 

halved at each subsequent layer to compensate for the 

resolution reduction. The lower-resolution levels with the 

fixed 3 x 3 neighborhood windows relatively cover 

increasingly large window areas when going from the currently synthesized image layer to the top 

most (coarse) layer. Together, these enforce a close match between the neighborhoods at s and p at 

different neighborhood scales.  

 

  The Cartesian product of all pixel values in a neighborhood can be interpreted as a vector in a 

high-dimensional domain. This allows each possible neighborhood in D or E to be seen as a point in 

this domain. Then, finding the closest match is equivalent to searching the nearest point in this 

high-dimensional domain. Several search algorithms are available that would speed up such a 

search. Tree-structured vector quantization (TSVQ) is suggested in [WEI00]. This creates a binary-

tree-structured codebook that is trained on the exemplar’s neighborhood vectors and allows very 

efficient traversal to search the approximately closest match to a vector from D. The size of the 

codebook can freely be chosen and is a tradeoff between traversal efficiency, accuracy and memory 

requirements. Without the TSVQ acceleration, the algorithm described in this section is about 4 

times faster than the algorithm proposed in [EFRO99]. With TSVQ acceleration, it is about two 

magnitudes faster than [EFRO99] and has O(log N) / O(N) times the algorithmic complexity, where N 

is the total number of exemplar pixels.  

 

 

6.4 Parallel Controllable Texture Synthesis 

 Pixel-based texture synthesis is very data intensive and fairly simple to implement. This would 

make it ideal for parallel execution on a powerful GPU. However, the algorithms above have the 

drawback of requiring sequential construction, as the output of one iteration serves as input to the 

next.  In [LEFE05] a texture synthesis algorithm is described that does allow highly parallel 

execution. 

 

 

 
FIGURE 6.7   Neighborhoods used for the 

calculation of the last pixel in layer 4 of a full 
Gaussian pyramid 
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 Like [WEI00], it uses multi-resolution levels of the image to work on different scales using a 

variation of the Gaussian pyramid, called the Gaussian stack. From the lowest-frequency level up, it 

calculates the next level of D in three phases, level by level. First, the previous level is sampled up in 

order to double its resolution. Secondly, the up-sampled information is jittered to introduce 

variation. Lastly, the level is iteratively corrected to recreate neighborhoods similar to those found in 

E. 

 

 But these steps are not executed on pixel color information in D. Instead, another pyramid S is 

used. S contains coordinates that point to pixels in the exemplar E. This allows D to be constructed 

from S by calculating E[S]. The advantage of working on a separate coordinate map is that this 

allows upsampling and jittering coordinates from a lower (coordinate) level, while full-spectrum 

non-degraded image detail can still be looked up. The 2D coordinates in S can be encoded as colors 

for visualization and fast GPU processing, using the red and green components as X and Y values, 

respectively. See Figure 6.8. 

 
FIGURE 6.8   The three phases of construction of the next layer. The images on the top row are coordinate maps. From [LEFE05] 

 

 In the upsampling phase, Si+1 is simply calculated from Si by doubling and interpolating the 

coordinate values in Si. The jittering phase introduces randomness by perturbing Si+1 using a 

deterministic pseudo-random hash function (e.g. Perlin noise).  Note that the amount of 

perturbation can be varied per layer, allowing for fine control over the exact type of variation. Also, 

when the jittering phase is left out, the synthesized image will closely match E or even consists of a 

(multiple of) exact copies of E, depending on whether E is toroidal. See Figure 6.9. 

 

 
FIGURE 6.9   Synthesizing three versions of D of twice the width and height of E  (the gray image). From left to right: No perturbation, perturbation 

at the higher (finer) levels and perturbation at the lower (coarser) levels of the image pyramid S. From [LEFE05] 
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 These first two phases can be implemented easily and efficiently 

on parallel architectures. The last phase contains the actual 

neighborhood matching part for all pixels, which contains many 

dependencies. Previous algorithms solved this by calculating and 

updating it sequentially for the different pixels. The algorithm in 

[LEFE05] introduces an iterative subpass approach that allows 

highly parallel execution. Each subpass updates an interleaved 

subset of Si  by searching for 5 x 5 neighborhoods in E that closely match the neighborhoods in E[S] 

for the pixels in the current subset of S. See Figure 6.10. To do the neighborhood matching 

efficiently, the exemplar is preprocessed (e.g. TSVQ) to allow a fast lookup of closely matching 

neighborhoods for all pyramid levels of E. In total, k2
 subpasses are used, each responsible for a 

regular, interleaved subset of S of non-(von Neumann) neighboring pixels, with typically k = 2 or 3. 

The partition into subpasses allows neighboring pixels in S to be causally dependent on the result of 

previous subpasses, while the update of non-neighboring pixels is executed in parallel at each 

subpass. In practice, results from this approach are often better and more isotropic than completely 

sequential approaches because there is no single explicit sequential construction order. When 

required, the quality can be further improved by applying the correction phase multiple times. 

 

 A unique and useful control supported by this algorithm is feature drag-and-drop. By letting the 

user influence the perturbations in the jitter phase, random variation can be locally replaced by 

exact placement of a feature found in E. For example, a mountain top in Figure 6.9 can be relocated 

from one position to another. To support this, yet another image pyramid can be used to look up 

the local perturbation. This image pyramid would initially be filled with random values, but can be 

replaced locally with specific coherent values, forcing a lookup for D from the desired area in E. And 

because the correction phase is still applied to S, the result remains seamless. However, this control 

is limited to spatially distant adjustments as earlier adjusted pixels in the perturbation image would 

otherwise be overwritten by the latest change.  

 

 The exact speedup accomplished by this algorithm depends on many factors. But as a rough 

estimation, the algorithm can be said to be about three magnitudes faster than [WEI00] for typical 

sizes (128 x 128 and 256 x 256) when executed on GPUs from around 2005. Synthesizing a 256 x 256 

image takes about 25 ms. 

 

 

 

 
FIGURE 6.10   The interleaved update 
pattern of 22 correction subpasses. 

From [LEFE05] 
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6.5 Preliminary Discussion 

 For this literature study report, it was not possible to run different algorithms on terrain 

heightfields to compare the quality of their results. Having such a comparison would make 

choosing between algorithms much easier. However, there is good reason to assume that the last 

two algorithms described above would produce heightfields of fairly good quality. Not only do they 

produce good results for smooth features, they also search for matching features in the exemplar at 

multiple scales. Both properties are expected to be needed for good terrain synthesis. The first 

property is important because terrains are, on average, locally fairly smooth and contain few or no 

really sharp ridges. The latter property is important because terrain is generally fractal, having 

features on all scales.  

 

 The three algorithms discussed in this chapter were ordered to be increasing both in algorithmic 

complexity and in synthesis speed. The last algorithm uses the parallel processing capabilities of the 

GPU to speed up synthesis. Whereas the first algorithm could take up to several minutes to 

complete the synthesis of an image, the third algorithm does this in a fraction of a second. This 

makes the third algorithm the only algorithm that could be used as an interactive tool for a level 

designer on today’s hardware.  

 

 It is expected that a tool that would allow a designer to copy properties of an exemplar area into a 

destination area of arbitrary shape and size would be very useful. However, the second and third 

algorithms discussed in this chapter are only capable of synthesizing a rectangular patch, without 

considering the neighboring terrain at the patch’s boundary.  Blending techniques discussed in 

Section 7.4 can be used to blend new terrain into already existing terrain. However, it might be 

possible to extend these algorithms to directly support natural transitions between existing and 

synthesized areas. More research and experiments would be required to verify this statement. 

 

 As a last note, the distance measure used by these algorithms was chosen for its usefulness for 

synthesizing 2D images but might prove to be suboptimal for heightfields. For example, it might be 

found that the derivative of the height in a heightfield might be more important than the (small) 

perceptual importance of the derivative in a 2D image. Most algorithms use the squared error 

measure for the neighborhood comparison, but this often can easily be replaced by other measures. 

It would require some experimentation to verify that other measures might improve the perceptual 

quality of synthesized terrains. 
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7 Terrain Geometry Editing 
 Chapters 4 through 6 discuss the procedural synthesis of new terrain. Some of the currently 

available level edit tools already allow some form of procedural terrain synthesis. Having such a tool 

helps a designer to create a rough outline of the whole terrain required for a game level. However, 

these tools only offer global, high-level parameters, making it hard to control exact placement of 

different desired landscape features (e.g. mountains and lakes) throughout the landscape. Even if 

one feature (e.g. a mountain) is generated to the liking of the designer by tweaking procedural 

parameters, it is very unlikely that all other simultaneously generated features in that generated 

landscape are more or less exactly as planned. Therefore, when a designer requires somewhat exact 

placement of specific features at specific locations he has no other choice than to use the only other 

set of tools that is typically available to further sculpt the procedurally generated rough outline. This 

alternative set of tools typically allow for low-level operations that only make simple local 

adjustments to the heightfield. Examples of these low-level tools are mouse-controlled local vertical 

heightfield pushing, pulling and leveling operations that operate at a specified location within a 

specified radius. However, once manual changes have been made to a terrain, the high-level 

synthesis tools are no longer of use; applying synthesis algorithms would otherwise overwrite all 

manual changes. 

 

 Low-level operations can be ideal when only small changes are needed. And indeed, every type of 

terrain can be created with these tools by a good level designer given enough time. But it is clear 

that tools that fit somewhere between the high-level procedural terrain synthesis tools and the low-

level local operation tools certainly would find their use in level design. 

 

 For this purpose, four types of editing tools are surveyed in this chapter. First, the terrain editing 

tools that are typically the only non-procedural tools available to today’s designers are covered. 

Secondly, simple extensions that allow terrain warping in uncommon ways are discussed. Thirdly, 

erosion algorithms are introduced in Section 7.3. These complement the other tools by offering the 

creation of more physically correct features that can easily be carved out where the designer desires 

to. Algorithms that are capable of integrating an area of one terrain into another are discussed in 

Section 7.4. Such algorithms make it possible to reuse terrain synthesis tools at later stages of the 

level design, as the combinations of these tools can be used to synthesize and blend in terrain in 

designated areas of a level that still need work. 

 

 

7.1 Simple Editing 

 Starting with low-level editing, this section gives an overview of the (only) terrain editing tools that 

are commonly available in today’s level editor applications. These are typically used inside an 

application environment that is able to render a 3D preview of the level at real-time. The mouse is 

used to designate the circular area a tool should work on. Typically, a tool radius can be chosen to 

vary the size of the selected area. Other options include the tool strength (e.g. amount of change 
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per time unit) and the shape of any strength falloff towards the boundary of the circular area. Then, 

the terrain is edited by repeatedly changing the editing tool type and its options and then ‘painting’ 

or ‘brushing’ with these tools by dragging the mouse. Of course, mouse simulating hardware like 

drawing tablets can transparently be used instead if preferred. Typical tool brushes are: 

 

Vertical push and pull These two tools simply slowly decrease and increase the height 

    values that are currently under the selected circular area, respectively. 

 

Smoothing  A simple low-pass filter is slowly applied to the height values inside the 

    the selected area over time. Smoothing can be used to smooth out areas

    that are too rough. 

 

Leveling  This drag tool sets all height values inside the (dragged) selected area to  

    the height value that lied at the center of the selected area when the tool 

     was activated (e.g. the left mouse button was first pressed). This is  

    typically used to level (i.e. bulldoze) streets and the areas surrounding 

     buildings. 

 

Contrasting  An (unsharp mask) sharpening filter is slowly applied to the selected area 

     over time. As the opposite of smoothing, it can be used to roughen 

     areas. 

 

Noising   Small random displacements are added to all height values inside the 

   selected area over time. This is typically used to introduce some  

   variation into terrain.  

 

 Like applying simple painting strokes, these tools can be used to create any type of terrain that is 

required. But of course, it takes skills to use these tools effectively. Also, creating levels this way is 

very time consuming. Nevertheless, this is all that is offered by most level editors. 

 

 

7.2 Warping Tools 

 As discussed in Section 4.3, domain and range mapping support stretching and warping of 

landscape features. Examples of range mapping are simple glacial-like and canyon-like range 

adjustments. Domain mapping allows irregular and naturally flowing horizontal warping when 

coupled to a (Perlin) noise distortion field. These techniques could be offered as editing tools to the 

designer to simplify the creation of certain types of features, or simply to move a feature 

horizontally or vertically. Like the other proposed editing tools, a brush with a user-defined radius 

and falloff curve could be offered as a local interactive tool, adjusting the terrain while brushing 

with simple mouse strokes. The amount and variation of distortion could be made adjustable 

through the use of sliders and presets or could be coupled to a (cascaded) noise source. 
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  Two different methods can be used for many of these brushes. The first is straightforward and 

consists of direct editing of the selected heightfield. The second is indirect editing, where the 

designer can paint an (invisible) mask field specifying the local strength of a tool’s effect, similar to 

an alpha mask. Then, this mask field is used to locally (re)apply any of the operations discussed 

throughout this chapter to create a separate output heightfield. This has the advantage of 

supporting a simple effect eraser brush where the effect mask can locally be cleared with. Another 

advantage is mask scaling, globally amplifying or fading away the effect. Also, more advanced, non-

linear techniques could use this mask to reapply the operation to the complete input instead of 

reacting to the latest change. Results created this way would be independent of the exact sequence 

of brush strokes.  

 

 When this idea of indirect editing is generalized, heightfield operations can be seen as a flow 

graph of operation and data nodes (e.g. blend nodes, file inputs, procedural heightfields and 

painted mask layers). Although this is a powerful paradigm, it is also difficult to implement 

efficiently in terms of memory and computational power, as explained in Section 2.5. It is especially 

difficult to do so when an operation requires multiple heightfield inputs. By allowing the designer 

to choose between direct editing and indirect editing through the use of mask layers, it is left up to 

the designer to choose the type that is most appropriate. Direct editing is fast and is less flexible. 

Indirect editing is more memory intensive and compute intensive, especially when many layers are 

used during editing. Collapsing a layer (i.e. applying the operator using the mask field, explicitly 

storing the result as a new heightfield and deleting the mask field and any other input fields) after 

being done with it might keep indirect editing workable at interactive speeds. 

 

 Because range and domain mapping derive a new heightfield from an original heightfield, it is 

expected that any direct feedback loop of the effects into the same heightfield by editing this 

heightfield will render these tools possibly less useful. For example, keeping your brush too long at 

the same location while using direct domain warping will result in a fully horizontally smeared 

patch under your brush, loosing all detail due to the repeated use. In contrast, by using a layered, 

indirect version, all original detail is maintained, as it effectively is a perturbed lookup into the 

original unaltered heightfield. And again, when the designer is content, the layer could be finalized 

and collapsed to preserve memory and improve performance. 

 

 

7.3 Erosion Tools 

 Although the tools that are described above are very simple, the concept of brushing to edit 

terrain is not necessarily too primitive to be efficient for a designer. When the set of brush tools is 

extended to include more powerful and natural effects, this intuitive interface allows creation of 

more natural effects in less time. In this subsection, different terrain erosion brushes are suggested 

to simplify the creation of geological phenomena that would otherwise be laborious to achieve.  
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 These brushes use simplified models of geological laws 

and observations to simulate different aspects of the 

real-world ongoing process of terrain erosion. Because it 

is essential to have tools working at interactive rates, as 

discussed in Section 2.6, many of the simulations 

mentioned in this subsection are only simple 

approximations of the actual geological processes. But 

nevertheless, impressive results can be created quickly 

with these algorithms.  

  

 Note that the algorithms discussed here were originally 

proposed as operations that are applied to the whole 

heightfield as an additional phase in the construction of 

procedural heightfields, as discussed in Section 4.4. But 

these algorithms are easily adapted to allow them to be 

applied only locally.  

 

 The erosion algorithms can be divided into two 

categories. The first simulates thermal erosion.  This is 

the geological term used for the process of rock 

crumbling due to temperature changes, and the piling 

up of fallen crumbled rock at the bottom of an incline. The second type of erosion discussed is 

fluvial erosion. This type of erosion is caused by running water (e.g. rain) that dissolves, transports 

and deposits sediment on its path. See Figure 7.1. 

 

 

7.3.1 Thermal Erosion 

 Thermal erosion, or thermal weathering, is the computationally least intensive type of erosion. 

However, the results created with this type of erosion are also less interesting. It simulates the 

process of loosening substrate which falls down and piles up at the base of an incline. This process 

is responsible for the creation of talus slopes at the 

base of mountains.  

 

 A simple thermal erosion algorithm is proposed in 

[MUSG89]. There, the heightfield is scanned for 

differences between neighboring height values that 

are larger than a threshold T. When found, the higher of 

the two neighbors deposits some material to the lower 

neighbor. If a height value has multiple lower 

neighbors, it distributes the deposition according to 

 
 

 
 

 
FIGURE 7.1   Different types of erosion. From top to 
bottom: unaltered procedural heightfield, thermal 

erosion and fluvial erosion. 

 
FIGURE 7.2   Thermal erosion deposition with c = 0.5, T = 

0.  From [BENE01b] 
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the relative differences. The amount of material deposited is a fraction c times the height difference 

between the neighbors minus T. See Figure 7.2. In effect, a maximal slope is enforced after enough 

iterations are executed.  

 

 The whole heightfield is updated at each iteration for these types of algorithms. Typically, the 

height values are read from the heightfield from the previous iteration, processed independently 

and stored to the new heightfield. As causal dependencies of interactions between values are not 

solved for but set independently for each height value instead, fluctuations in total mass and 

oscillatory heights can occur. But when the fraction c of deposited material is chosen small enough 

(e.g. 0.5), these effects will be sufficiently damped and barely noticeable. The advantage of such an 

implementation is that it allows parallel execution of all height updates within one iteration.  

 

 

 

 

 

 

 FIGURE 7.3   Before (left) and after (right) erosion was applied to the letter W consisting of a hard material and a layer of soft 
material on top.  

 

 A layered representation of heightfields was presented in 

[BENE01a] in order to cope with a different rock hardness at 

different earth layers. This allows different erosion rates at 

different locations and at different depths. The layers are 

represented as the relative height of different stacked material 

layers in a vertical geological core sample from the surface 

down to an absolute zero height. See Figure 7.4. Therefore, the 

height at the surface is the sum of the different layer lengths. 

Erosion is only applied to the surface, using the erosion 

parameters of the top layer. After this layer has locally been 

worn away, the next layer is exposed and so on. This can result 

in more varied results when the layers have been defined 

usefully. The experiment shown in Figure 7.3 shows a result that would be difficult to achieve with 

non-layered erosion. 

 

 

7.3.2 Fluvial Erosion 

 Fluvial erosion, or hydraulic erosion, involves depositing water that can dissolve, transport and 

deposit suspended material on its way downhill. Examples of its effects are gullies and alluvial 

planes. But also the effects of alpine glacial erosion can be simulated if the right settings are used. A 

simulation of such a process is generally computationally more involved than thermal erosion. 

 
FIGURE 7.4   Example of a layered core 

sample.  From [BENE01a] 
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 These erosion algorithms can roughly be divided into two approaches. One is the simulation of 

individual water particles using a particle system, eroding the terrain under their individual paths. 

Simple physics rules are used to calculate the trajectory as it ‘rolls’ down and picks up and deposits 

sediment. The other approach uses a set of additional ‘height’-fields that store the amount of water 

and the amount of suspended sediment within each grid cell. Then, a simulation step consists of 

updating these fields after locally exchanging the necessary information between neighboring cells. 

This type of grid-based local interaction is typical for all cellular automata algorithms. 

 

  A summary of [CHIB98] was already given in Section 4.4, where individual water particles are used 

to calculate water quantity, velocity and collision energy data fields which are on their turn used to 

update the heightfield. This process is repeated as many times as needed. Although the original 

paper used it to create new heightfields, it can be used to adapt a (previously generated) existing 

heightfield without any modifications.  

 

 One of the first grid-based fluvial erosion algorithms 

can be found in [MUSG89]. Each grid point v in the 

heightfield H(v) contains an additional water volume 

W(v) and a suspended sediment amount S(v). Initially, a 

uniformly distributed amount of water is dropped (i.e. 

all of W is set to a non-zero value). When the local 

altitude plus the local water level is higher than the 

neighboring levels, the difference is transferred to the lower neighbors. See Figure 7.5. Flowing 

water will dissolve material and carry this sediment to its lower neighbors, up to a given sediment 

capacity constant times the (steepness-dependent) volume of the transferred water. Dissolving 

material is implemented by locally increasing the value in S(v) by the same (small amount) as 

decreasing H(v). Likewise, depositing material increases H(v) at the cost of S(v). When the local 

steepness-dependent sediment transfer capacity is larger than the amount of local sediment, more 

sediment is dissolved from H(v) and transferred. Likewise, when the capacity is smaller than the local 

amount of dissolved sediment, some of the sediment is deposited back to H(v). Because the 

capacity is zero when the water level has reached a (local) equilibrium, all dissolved sediment is 

eventually returned to H(v).  

 

 In effect, this process will dissolve material from steep areas where relatively more water will flow 

and deposits the dissolved material again at flat areas downhill. As the geometry will force water to 

flow down non-uniformly, certain areas will be deepened and smoothed more than average. Areas 

that are deeper than their surrounding areas will receive even more water in the next iteration, 

amplifying this effect. As a result, distinguishable water streams are sculpted into the original 

heightfield. Note that water velocity, impact and evaporation are not considered here. Nonetheless, 

impressive result can be obtained with this algorithm given the right parameters and enough 

iterations. See Figure 7.1. 

 
FIGURE 7.5   Fluvial erosion water transfer 
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 Several variations have been devised. In [BENE02b], water 

evaporation is included to limit the distance sediment can travel. 

Olsen suggests several tradeoffs between accuracy and speed in  

 [OLSE04]. There, only the four neighbors in the von Neumann 

neighborhood are considered instead of the original eight 

neighbors in the Moore neighborhood. See Figure 7.6. Also, 

water is only transported from a high grid cell to its single lowest neighbor instead of being 

distribution among all its lower neighbors. Furthermore, it is assumed that water is fully saturated 

with sediment at all times and thus no separate S(v) sediment map is required.  Although physically 

less correct, the results are still visually plausible. 

 

 A more physically correct model has been proposed in [BENE06] by 

discretely solving the Navier-Stokes equations to simulate water more 

realistically. Sediment transportation equations are added to simulate 

erosion. The equations are applied to voxelized (terrain) patches instead 

of heightfields to allow for a standard Finite Element Modeling approach 

to solve these equations. See Figure 7.7. Although results are impressive, 

calculation time currently prohibits its use in interactive applications. 

 
 

7.4 Terrain Blending 

 Another useful type of brush would be a copy brush. This would enable a designer to locally ‘paint’ 

a terrain from a different source heightfield onto the destination work terrain. Consequently, 

procedural techniques might be used in later stages by blending any desired parts of newly 

generated terrain into a project. Such a copy brush could be accomplished in different ways, 

varying from the simple copy-pasting of all height value within a (circular) brush area, up to 

seamless copying and blending of brush areas using more advanced algorithms.  

 

 As discussed in Section 7.2, brushes can be applied by directly modifying the original area or can 

be applied indirectly by transparently (re)applying an algorithm to the separately kept original area 

while using a brushed influence mask. The latter has the advantage of supporting eraser brushes 

(locally clearing the influence mask) and global scaling and tweaking of the effect at any time. 

Terrain blending would benefit from this latter approach as it presumably requires iterative 

tweaking of the exact blend area and other blend parameters.  

 

 The simplest type of blend would be mere copy-pasting of the selected source terrain into the 

destination terrain. One difficulty with this idea would be the resulting seams at the border of the 

selected area. Unless the height at the source and the destination area match up at the borders of 

the brush(ed) area, a shift in average height will be noticeable. This is generally not desirable as you 

       
FIGURE 7.6   Neighboring cells (grey) of in 

the Von Neumann neighborhood (left) and 
Moore neighborhood (right) 

 
FIGURE 7.7   Oxbow lake-like 
features carved out by water 
simulation in a terrain patch. 

From [BENE06] 
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most likely would like to copy features within the brush areas from the source area to the 

destination area, not create new features (i.e. the sudden change in height). The following 

subsections discuss different techniques of increasing complexity to blend two heightfields. As with 

many algorithms discussed before, these techniques were developed as image editing techniques, 

but can transparently be applied to heightfields as well. 

 

 

7.4.1 Simple Boundary Feathering 

 A common technique in image editing is feathering. A soft brush (with a falloff curve towards its 

edge) is used to blend in the result. A simple dst’ = lerp(dst, src, mask) (i.e. linear interpolation blend 

of src into dst where indicated by mask) can be used to calculate the local height value of the 

blended result. Here, mask is a temporary mask field (i.e. a scalar field similar to a heightfield) where 

the local value determines the blending strength. It is typically zero for all height values outside the 

brush’s radius and is increasing up to one towards the brush’s center. This will limit the hardness of 

the brush’s border, but will not completely alleviate the problem, as Figure 7.8 demonstrates for a 

synthetic example. In that figure, a ‘mountain’ is created while it might be the designer’s intent only 

to locally replace the square wave with the triangular wave where he or she brushed. The problem 

here is the large difference in the mean of the source and destination terrain. In this particular case, 

one could normalize both the source and destination terrain by subtracting their respective mean 

value before blending them and then add the old mean value of the destination again. This can be 

seen as separating the terrains into a DC (i.e. zero frequency) component and a non-DC  (i.e. all non-

zero frequencies) component, blending the source and destination terrain per component using a 

weighted strength mask and calculate the sum of these blended components. This is a special case 

of the algorithm discussed next. 

 

 Destination terrain Source terrain Feathered brush strength mask Result blended terrain 

     
FIGURE 7.8   Terrain heightfield cross section 

 

 

7.4.2 Multi-resolution Blending 

 In Section 6.1, Laplacian and Gaussian pyramids are discussed. These two types of pyramids 

effectively calculate low-pass-filtered and band-limited octaves of an input image, respectively. In 

[BURT83], an image blending technique is introduced that uses these pyramids to blend the source 

and destination image differently for different octaves. This is one example of multi-resolution 

blending.  
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This algorithm consists of three steps: decomposition, blending the different components and 

recomposition. Decomposition consists of calculating the Laplacian pyramid of both the source and 

destination image. Also, the Gaussian pyramid of the mask is calculated. Then, a new Laplacian 

pyramid is calculated from these three src, dest and mask pyramids by calculation the independent 

result image of a lerp(src, dest, mask) per pyramid layer. Finally, the image result is recomposed by 

summing over the different layers of this resulting Laplacian pyramid. Although originally 

developed for image mosaicing, it can transparently be applied to heightfields. This blending 

process is demonstrated in Figure 7.9 for the synthetic terrain cross section of Figure 7.8. 

 

 

Destination terrain 

 

Source terrain 

 

Mask 

 

 

Pyramid 

Layer: 
Laplacian pyramid: Laplacian pyramid: Gaussian pyramid: 

Laplacian pyramid of lerp() results 

for each layer: 

n 

    

…  …  … 

n - 2 

    

…  …  … 

1 

    

   Result: 

 

 
FIGURE 7.9   Multi-resolution blending of a terrain heightfield cross section 

 

 This algorithm results in a multi-resolution blend of source and destination where the finest details 

are interpolated between source and destination over a short distance when a (non-feathered) 

brush is used. Coarser detail is interpolated over a longer distance. In effect, details will be blended 

over distances similar to the specific detail size. 

 

 This idea can be made more flexible by introducing a scaling factor per layer of the mask pyramid, 

bound between 0 and 1. Choosing relatively lower scaling factors for the lower octaves would result 
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in copying less of the lower frequencies of the source image. Likewise, zeroing out the scaling factor 

for the highest frequencies would leave the higher frequency features of the destination 

unchanged. See Figure 7.10 for these two scaling examples applied to a more realistic heightfield. 

 

 A potential disadvantage of this technique is that the destination heightfield is also adjusted 

somewhat outside the masked area as the influence mask is spread out for lower resolutions (i.e. 

lower layers) due to the low-pass filtering. In Figure 7.9 this shows as a change of the mean height. 

This might or might not be appropriate for different situations. Another approach that only changes 

the area inside the mask is discussed next. 

 

Original heightfield 

 
Blend one: High-frequency 

  
Source heightfield 1 Blend strength mask  

 
Result after the first blend, using zero amplitude for the lower octaves. Note 

that only high-frequency detail is copied and global features are left 
unchanged  

 

Blend two: Low frequency 

  
Source heightfield 2 Blend strength mask  

 
Result after applying the second blend, using zero amplitude for the higher 

octaves. Note that only low-frequency features are copied and high-
frequency detail is left unchanged 

 
FIGURE 7.10   Example of two differently weighted multi-resolution blending operations applied to a heightfield. 

 

 

7.4.3 Poisson Editing 

 The more involved method discussed in this subsection solves a linear system of Poisson-based 

equations to calculate the best blend of a source area into a destination area. Introduced in 

[PÉRE03], a more elaborate discussion can be found there on the theory behind it and its different 

applications to color images. Here, only a short summary of the basic discrete result is given. 
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 The problem of blending source areas into destination areas is most noticeable at the edges of this 

area. Feathering (i.e. a brush with a falloff curve) helps to hide this, in effect spreading the boundary 

error over a greater distance. The algorithm discussed in the previous subsection applies this over 

multiple scales to hide this even further. The method discussed here takes another approach.  

Instead of spreading the differences at the boundary over a distance explicitly, the destination area 

inside a (brushed) mask area is calculated by solving a quadratic minimization problem in the 

images’ gradient domain. The destination area outside the masked area is completely left 

untouched. Given are the pixel values at the mask’s boundary edges of the destination area, as well 

as the source’s pixel values inside the mask and at the mask’s boundary. For now, a boolean mask is 

assumed. From these values, a minimization problem is formulated containing a set of quadratic 

equations.  As the minima of quadratic equations can be calculated by the use of their (linear) 

derivatives, the solution can be found by solving a matrix of linear equations. 

 

 Destination image. The white area was cut 
as it is no longer needed and will be fully 

replaced by the blend result 

Source terrain. Example pattern containing 
sharp edges through the use of contrasting 

colors 

Result blended terrain. Note that results are 
a little different than expected from a 

boolean mask, as the application used to 
create this image also applied some 

feathering near the edges 

   
FIGURE 7.11   Poisson blending of two images using a circular mask 

 

The set of equations that needs to be solved can be written as follows: 

 

   
p p

q p p q p pp
q N q N

D N D S N S
∈Ω

∈ ∈

∀ − ⋅ = − ⋅∑ ∑  

 

 Here, Ω is the set of pixels that are masked and need to be set by the algorithm 

(white pixels in leftmost image in Figure 7.11). Sp and Dp are pixels from the 

source image and destination image inside Ω, respectively. Np are the valid 

pixels inside the von Neumann neighborhood of p, p itself excluded. Hence, |Np| 

is 4, except at any border pixels of S and D. See the red cross surrounding a center pixel p inside the 

white Ω area in Figure 7.11 for an example for Np. Of course, all Sp and Sq are known. All Dp-s are 

unknowns. Likewise, Dq-s are also unknown, except for the neighbors of a p that are at the (outer) 

border of Ω. Cases of known Dq-s are marked with a black border in Figure 7.11.  Both the lhs (i.e. the 

left-hand side) and the rhs (i.e. the right-hand side) of each equation can be interpreted as a 3x3 

approximation of the Laplacian operator. See Figure 7.12. Therefore, this set of equations can 

 

FIGURE 7.12   3x3 
approximation of the 
Laplacian operator 
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interpreted as matching the local 2nd derivatives of the result (the lhs) with the local 2nd derivatives 

of the source (the rhs) for all pixels that are part of Ω. The Dq-s that are known (the black bordered 

squares in Figure 7.11) will bind part of the lhs variables of the equations, resulting in a smooth 

transition from the boundary inwards when this linear system is solved. 

 

 Together, these linear equations form a sparse, banded matrix that is best solved using an iterative 

solver. Examples of these are Gauss-Seidel solvers with successive overrelaxation or V-cycle 

multigrid solvers.  Both allow a patch of about 256 x 256 pixels (or, heightfield values) to be blended 

at interactive speeds on today’s CPUs. These solvers can also be implemented on the GPU [BOLZ03] 

to blend even larger patches at reasonable speeds. 

 

 

7.5 Preliminary Discussion 

 Many different editing techniques have been introduced and proposed in this chapter. All of these 

could be offered to the designer by the use of brushes that immediately (should) have effect on the 

visible landscape. Simple brush strokes, together with user-editable settings and presets, provide a 

recognizable interface to users of Photoshop and other image editing applications.  

Offering the possibility to use Photoshop-like effect layers for indirect editing could further enhance 

the potential.  

 

 When compared to the limited heightfield editing functionality offered by most of today’s level 

editing tools, much can be gained by offering (any subset of) the ideas proposed in this chapter. For 

example, blending terrain allows the reuse of procedural techniques in later stages of the design 

where medium-sized areas possibly need to be changed. Range and domain mapping might assist 

designers in creating natural effects in an efficient way. Also, erosion is a valuable tool that allows 

the creation of realistic features that are otherwise hard to accomplish using procedural techniques 

and low-level editing. The tools proposed here would all be fairly intuitive as their effect should be 

directly visible. Also, the types of parameters are intuitive and could be made consistent, except 

perhaps for the different erosion and blend algorithms. It might be considered to support only one 

(flexible) type of erosion and blending. 

 

 Erosion could be offered as a single tool, applying erosion globally to create a large patch of a 

certain type of terrain, or be applied only locally as a tweaking tool by, for example, ‘brushing’ rain 

that erodes the heightfield underneath it. This would offer the designer a tool that fits nicely 

somewhere between high-level global procedural generation and low-level local editing.  Note that 

the speed of an erosion tool, or of any brush tool for that matter, is essential, requiring interactive 

rates to allow the designer to intuitively work with a tool. The results from the erosion algorithm 

introduced in [BENE02b] (fluvial erosion with water evaporation, Section 7.3.2) are reasonably good 

as this algorithm has a good balance between quality and speed and allows efficient execution of 

this algorithm on the GPU. Therefore, it is expected that this algorithm will be the best choice for an 
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erosion brush. Also, the evaporation will limit the radius of a local rain brush, making it better suited 

as a local editing tool. If this algorithm would still prove to be too slow to be effective as an 

interactive tool, the simplifications suggested in [OLSE04] could be tried out and be made optional. 

 

 Of the discussed blending tools, multi-resolution blending is probably the most flexible and 

‘tweakable’ algorithm. And it is presumably faster than the Poisson editing technique and easier to 

implement. Different blending effects can be accomplished by changing the multi-resolution 

weights of the tool. Offering only this algorithm as a blending tool is expected to be powerful 

enough for designers. But experiments might be needed to verify this, as few designers previously 

have had the chance to experiment with blending. 
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8 Terrain Texture Editing 
 So far, the focus of the algorithms covered in this report has been on synthesizing and editing 

heightfields. When a heightfield is to be used in a real-time engine, this heightfield will generally be 

rendered as a set of polygons. Assigning uniform colors to these polygons will not create very 

convincing results when rendered. Photorealistic textures can be assigned instead to increase the 

visual resolution of the material the terrain is made of. Typical textures include mud, snow, dirt, 

sand, grass and rock. These terrain textures can be created by artists from edited photographs or 

might even be generated procedurally. Texture creation is not covered here. Instead, this chapter 

shortly discusses different techniques to locally and/or globally create and edit a mapping of 

already-made terrain textures to the terrain heightfield. 

 

 

8.1 Terrain Texturing Methods 

 Textures are typically applied to triangles during rendering. To triangulate heightfields, the 

heightfield elements are first used to construct a mesh of quadrilaterals (quads). The vertices of this 

mesh are spaced regularly when projected on the horizontal plane. The vertical displacement of 

each vertex is the height value of an associated heightfield grid element. As efficient rendering 

requires triangles, these quads are subdivided further into two triangles. Three common methods of 

subdividing quads into triangles are depicted in Figure 8.1, varying in isotropy and control.  

 

Regular triangulation. Twice as much 
resolution in one diagonal direction than the 

other diagonal direction. 

Regular checkerboard-like triangulation. 
Both diagonals have identical average 

resolution. 

Irregular triangulation. User can select the 
diagonal per quad, gaining control over 

relative diagonal resolution. 

   
FIGURE 8.1   Different quad mesh triangulation techniques for 16 quadrilaterals. 

 

 Different methods can be used to apply texture to heightfield triangles, varying in quality, 

flexibility and memory requirements. These techniques are covered below. 

 

Global texture 

 The simplest texturing technique is analogous to the idea of heightfields. A single color image is 

assigned 1:1 to the whole terrain geometry using a vertical orthographic projection.  Obviously, the 

disadvantage of this technique is memory usage as using resolutions that result in more than only a 

few pixels per triangle are prohibitively memory intensive.  It might suffice for flight simulators, 

rendering the terrain from a great distance, but looks terrible for applications that show the terrain 

from only a few meters above ground. Also, creating a global map can be difficult to do by hand. 
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However, when the used heightfield is actually a realistic model of real existing terrain, an aerial 

photograph might be used instead. See Figure 8.2. 

Global texturing Global + detail texturing 

  
FIGURE 8.2   Global texturing with and without detail texturing. Note the visible lack of detail near the camera in the left image.  

 

Detail texture 

 A fast and simple improvement of the previous technique is the use of an additional detail texture. 

A detail texture is a high-resolution texture of a small patch of terrain. This texture is typically tiled 

(i.e. repeated) at every heightfield quad and blended additively or multiplicatively together with the 

global texture. This will give the global texture a high-resolution look to it. The disadvantage is that 

different types of ground materials (represented by the different colors in the global texture) will 

use the same, globally applied detail texture to improve visual resolution. This could result in, for 

example, strange looking patches of green grass (from the global texture) with a rock-like look (from 

the detail texture). See Figure 8.2. 

 

Quad textures 

 One way of introducing detail that matches the 

material type (e.g. rock and grass) is to assign a single 

detail texture from a small, fixed set of detail textures 

to each heightfield quad. This can be implemented by 

replacing or extending a global texture to assign a 

number to each terrain quad, indexing into a detail 

texture array. Of course, changing the texture per quad will create visible texture seams unless 

carefully constructed transition textures are placed between adjacent quads of different material 

types. See Figure 8.3. This technique can be interpreted as a 3D application of classic 2D arcade 

sprite tiling. Another (or combined) global color texture might be used to blend with the quad 

texturing to introduce some subtle variance in the color, hence hiding the repetitiousness of the 

detail textures somewhat. Requiring at least one transition quad between different types of terrain 

might result in too smooth transitions in some rapid-changing situations. The number of transition 

textures is quadratic in the number of different terrain types, becoming the limiting factor.   

 

 Wang tiling can be considered to be a special case of quad texturing. There, tiles (i.e. a texture per 

heightfield quad) are selected and assigned from a minimal set of carefully constructed tiles to 

effectively create an aperiodic tiling pattern [STAM97]. See Figure 8.4. Edges of the tiles in this set 

 
FIGURE 8.3   Quad texturing without transitions. Note the 

seams between the rock and grass texture. From [DEXT05] 
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are said to be color coded and need matching edge colors with their neighbors, much like dominos, 

when laid on the heightfield in order to create seamless a result. A carefully constructed set of tiles, 

combined with a set of recursive production rules will create a seamless tiling. Although aperiodic 

tiling greatly reduces the visual repetitiveness of a texture, it isn’t clear how to adapt this to use 

multiple base textures including transitions between these (e.g. grass and rock).  

 

Standard, periodic tiling Aperiodic tiling 

  
FIGURE 8.4   Example of standard tiling and aperiodic Wang tiling. From [STAM97] 

 

Splatting  

 Splatting can be seen as an extension to quad 

texturing, using automatic blending of different 

textures. Transitions and material blending (e.g. 20% 

sand and 80% dirt) are done in real time by calculating 

a weighted average of different material textures. 

These weights are assigned per vertex, typically using a 

texture for weight look-ups, and are linearly interpolated between vertices during rendering of the 

terrain quads [BLOO00] [DEXT05]. See Figure 8.5. Typically, only a few materials are used locally at 

once because blending too many textures together will result in a muddled appearance. But over 

larger distances, many other materials might be found. Storing the blending weight for all possible 

materials per vertex, of which many weights would be zero, would require a lot of memory. Partition 

techniques can be applied to store only the non-zero weights of textures actually used at different 

areas of the terrain, resulting in considerable memory conservations. Although the splatting 

technique can introduce variation through subtle weight perturbations to hide patterns of 

(identical) texture repetition, Wang tiling could be applied to hide these patterns further. However, 

its advantage might be outweighed by the increase in difficulty to create a Wang tiling set for each 

base texture and the increase in algorithm complexity and storage requirements to use Wang tiling. 

 

Procedural techniques 

 Like the procedural generation of heightfields, textures can be generated and assigned 

procedurally. Creating textures procedurally could potentially result in infinite detail. However, this 

would have to be done in real-time, as storing an offline generated texture would only differ in the 

method of creation, not the representation and mapping. However, real-time generation of 

complex procedural textures is currently still too compute intensive for most purposes. Also, these 

procedural techniques would not allow any fine-grained local control over the texturing, similar to 

procedural techniques discussed in Chapter 4. As processing power increases, more complex 

 
FIGURE 8.5   Splat texturing. Compare to Figure 8.3. From 

[DEXT05] 
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schemes are used in games and other interactive applications. Consequently, a shift from 

global/detail texturing and quad texturing to splatting has taken place in the last few years. As 

hardware advances further, high-detail real-time procedural techniques might eventually become 

the dominant technique. But as this report focuses on the best possibilities for editing terrain on 

today’s hardware, only the de facto splatting is considered in subsequent subsections. 

 
 

8.2 Splatting Extended 

 As explained above, texture splatting uses blend weights to locally blend 

between textures in real-time. During rendering, the different blend 

weights are sampled from a global texture containing exactly one sample 

per heightfield vertex. To aid the designer in designing these local weights, 

a layered material representation is generally used. These weights then 

correspond to the opaqueness of a material layer. Typically, the designer is 

expected to define these materials. Materials typically consist of a texture and a scaling factor. These 

materials are blended in a pre-designed order during rendering. This ordering is important since 

blending material A with B will generally not be identical to blending material B with A. For example, 

when the ‘higher’ layer of the two has 100% opaqueness, the ‘lower’ layer will be completely 

covered, independently of the opaqueness setting of this lower layer. An example of a layered set of 

materials can be found in Figure 8.6. When these specific layers would be used, the grass texture 

will always be placed on top of the sand texture. Also, any rock texture can only be visible when the 

weight of ‘snow’ is locally smaller than 1.0. Some implementations allow a hierarchical parent-child 

system, where the local opaqueness of child layers is multiplied by the opaqueness of their parents. 

In effect, a texture assigned for a child layer will only be visible when both parent and child locally 

have a non-zero weight assigned. Therefore, the ‘Long Grass’ child in the example above could only 

be visible where its ‘Grass’ parent has a non-zero opaqueness.  

 

 The weights are typically brushed on the terrain by the designer by selecting a circular brush and a 

material to paint with. Brushing is intuitive and typically appreciated by designers. This could be 

extended by constraining the brush using other factors. In natural scenes, the type of visible local 

surface material depends on many factors including soil type and erosion (e.g. soft sediment or hard 

rock), temperature, absolute height (height above sea level), local relative height (local valleys 

generally contain more water and are more sheltered), slope steepness and slope direction, all 

influencing the local sun, wind and rain conditions [HAMM01]. From these, the local height and 

slope attributes can directly be calculated for a heightfield. These properties can be used for user-

defined brush constraints (e.g. not allowing the snow texture weight to be increased below a 

certain absolute height). The designer could then select min/max ranges for these height and slope 

constraints and paint with broader brush strokes while automatically considering the terrain 

geometry. To prevent these constraints from creating too regular and hard-edged weights, these 

constraints can be made softer by using a falloff ramp near the ranges’ min/max values. Also, local 

 
 

FIGURE 8.6   Example of a 
user-defined material layer 

hierarchy. 
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height and steepness values can be blurred together with values of neighboring quads to create a 

smoother result. To introduce irregularities, a noise function (see Chapter 5) can be used to locally 

perturb the selected ranges.  

 

 An alternative to using (non-global) geometry-constrained paint brushes would be to enforce 

these constraints globally. This could be used to generate a user-defined first approximation of the 

terrain texturing. In some (purely procedural) applications, this is in fact the only option available to 

the user. Note that applying the constraints globally could undo any previously handcrafted work, 

similar to procedural heightfield generation. In Section 7.4, a solution was proposed to overcome 

this problem by allowing procedural results to be blended in, with or without the use of layers. For 

texturing, a somewhat similar approach could be used. A solution would be to use a double set of 

layers, the upper half taking precedence over the lower half. Then, the lower half could be assigned 

procedurally and allow height and slope constraints to be set. The upper half of the layer set is used 

by the designer to paint on top of the procedurally defined texturing where desired. When the 

designer would like to make a local change, he could do so by brushing (i.e. increasing the local 

weight of) one of the layers of the top half. Likewise, undoing any local custom changes could be 

done by simply erasing any painted weights of the top half. Adjusting and globally applying the 

procedural settings after local changes have been made is possible as updating the lower half of the 

layers would not affect the custom painted upper half on top of it. Implementing this directly would 

double the number of real-time texture lookups. However, the doubled set of material weights, 

defined by the custom and procedural weight for each of the used textures, can transparently be 

compiled onto a single set of texture weights as a render preprocess operation without loss of 

flexibility. In fact, the only difference is editor representation, not renderer implementation. 

 

 

8.3 Texture Projection 

 As discussed in Section 3.1, one problem with heightfields is the uniform resolution across the 

horizontal plane. As a result, steep areas contain less heightfield vertices per area unit because the 

distances between vertices are increased by vertical differences. Splatting typically renders a 

complete (blended) texture on each quad. Consequently, textures will be stretched in the steepest 

direction. This texturing method can be interpreted as an orthographic projection along the vertical 

axis of a (repeated) texture onto the heightfield. 

 

 For arbitrary 3D objects, this problem is normally handled by applying more complex projections 

or even unwrapping the mesh onto a texture plane, called UV unwrapping. This idea could, in 

theory, also be used for heightfields. UV unwrapping is time consuming to do by hand. 

Algorithmically generating optimal unwraps is feasible using, for example, iterative error/energy 

minimization algorithms. However, these are typically slow and are global, affecting the texturing 

even far away when a local change is made. Furthermore, texture coordinates are often not stored 

explicitly in current applications, as these are typically derived directly from the vertex positions 
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projected on the horizontal plane to save memory. Therefore, automatic UV unwrapping is not very 

practical for current applications. 

  

 A simple and effective alternative would be use a different texture projection direction near very 

steep terrain, other than the vertical axis. One way of implementing this would be to let the 

designer assign a single X, Y or Z orthographic projection axis for each of the defined materials. 

Note that selecting a projection axis would only influence the way texture coordinates are derived 

from the 3D heightfield vertex information. Therefore, nothing is actually rendered from aside and 

so occlusion and back faces are never an issue when projecting. The designer can create different 

materials using the same texture but with a different projection axis. Then, the local projection axis 

can be chosen freely by brushing with, or procedurally assigning, the most appropriate material. 

Obviously, using the material of a certain texture that has its projection axis most perpendicular to a 

quad’s surface would cause the least amount of texture stretch. The splatting of the different 

materials will cause a transitional blend between any neighboring areas that use a different 

projection, just like any other texture splatting blend. This blending of identical textures using 

different mappings will not be too noticeable, as terrain textures are already designed to contain as 

less distinguishable, separable features as possible in an attempt to hide repetitious tiling patterns. 

The performance penalty is no different than having many different textures applied to a terrain. 

Smart partitioning into smaller patches of terrain would significantly limit the number of different 

materials to be blended per quad during rendering, only using more blends near transitional areas. 

 

 

8.4 Preliminary Discussion 

 This chapter has given an overview of techniques described in literature and found in practical 

applications. As computational power and storage capacities increase, more complex render 

techniques become feasible at real-time frame rates. Currently, texture splatting is the preferred 

technique as it relieves the designer from explicit creation and assignment of transitions between 

different types of ground coverage, while limiting the amount of memory and processing power 

required. Subtle variations are easily added by small changes in weights, possibly combined with a 

subtle global color texture map. Designers could be enabled to design ground coverage layers 

using a hierarchical material representation. Height and slope dependent layer parameters could be 

chosen to procedurally assign material textures, possibly extended with blurring and noise 

perturbation to create a more varied result. Local modifications could be made to a procedurally 

generated global material assignment by supporting local brushing with one of the selected 

materials. These custom changes can be kept separate from the procedural layers by transparently 

doubling the set of used materials and let the custom changes always take precedence over the 

procedural assignments. This keeps procedural changes as a result of changed procedural 

parameters separate from any custom work, allowing for (re)tweaking of these parameters at later 

stages without destroying any of the handcrafted changes. 
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 Although all of the separate features mentioned above have been implemented in one or more 

editing applications, most applications only support a subset of these features. However, to support 

a designer optimally, implementing this full set of features would be very useful. Also, this system 

can be made more powerful by letting the procedural assignments be dependent on other factors. 

An example of this would be to have an independent procedural field locally influence the weight 

of a grass material, possibly combined with already discussed height and slope constraints. This 

would result in patchy areas of varied amounts of grass. Another example of this would be to have 

the ‘Long grass’ layer in Figure 8.6 be influenced by this independent (and possibly otherwise 

invisible) field instead, creating a complex combination of different grass patches. Even another way 

of achieving a more varied effect would be to have this field influence (or even decide) the local 

color of an applied global texture, resulting in a more varied palette of colors. Each of these ideas 

would result in a more natural, visually complex terrain with the minimum amount of effort. 

Furthermore, other types of properties and geometry might influence the procedural choice of local 

ground coverage. For example, grass generally doesn’t grow very well in thick forests and on 

shorelines. So, it makes sense to allow proximity of large amounts of water and large objects (e.g. 

trees) be used as additional factors in the procedural decision of texturing.  
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9 Foliage Placement 
 Both terrain geometry and texture editing has been discussed so far. This chapter covers the last 

aspect of outdoor terrain discussed in this report: placement of foliage objects (e.g. grass, bushes 

and trees). In contrast to terrain texturing, terrain foliage objects (and other types of natural objects, 

like rocks) consist of (textured) 3D geometries, placed on top of the terrain. Foliage geometry 

creation is not covered in this report. The interested reader is referred to [PRUS90]. Instead, this 

chapter discusses the effective placement of foliage geometry objects onto the terrain. Please note 

that placing rocks and stones is not mentioned explicitly in this chapter, as it would suffice to use 

simplifications of the algorithms discussed below. Hence, support for rock placement could easily 

and transparently be added. 

 

 As virtual foliage consists of 3D geometry, individual objects can be placed into a virtual 

environment like any other type of geometry. Typical tools used for this would be object importing 

and translation, rotation and scaling operations. Each object can be placed individually by the 

designer as he wishes. This might be ideal in some cases that would require exact control over the 

result. For example, creating a garden with plants placed in some desired pattern, but also, trees 

that are part of the gameplay in a game and are placed there for a specific purpose. However, 

creating large patches of grasslands or forests in this way would be very cumbersome. 

 

 Once again, procedural techniques can be used to support designers by allowing them to apply 

foliage on a higher level. Two different techniques of foliage placement are discussed here: L-

systems and density evaluation. These two approaches are discussed in the first two subsections.  

The main disadvantage of both basic techniques and a solution to this disadvantage are discussed 

in Section 9.3. A preliminary discussion is given in Section 9.4. 

 

 

9.1 L-Systems 

 L-systems [PRUS90] are most known for their use in procedural generation of plant geometry.  L-

systems apply rewriting operators (production rules) to an initial string (the axiom) using a finite 

symbol alphabet. Complex, natural structures can emerge when this string is interpreted after string 

rewriting has been completed. For plant generation, symbols like branch commands and 

radius/length modifiers are used. The applied rewriting rules are designed to result in additional 

branching after each completed iteration to simulate growth, creating natural virtual plants when 

the resulting symbol string is interpreted as a geometry construction sequence. Strict L-systems lack 

context sensitivity and the support for external function evaluation. When extended with these 

features, L-systems have shown to be remarkably successful in simulating all sort of growth. For 

example, in [PARI01], L-systems have been used to generate whole cities. In [DEUS98] and [LANE02], 

the spreading, growth and death of foliage objects is simulated using L-systems. These rules 

effectively enforce a natural balance between foliage over many iterations. Also, by incorporating 

nearest neighbor distance functions into the rules, more complex ecological effects can be 
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simulated. Good result can be obtained through L-systems. However, this approach is rather 

compute intensive [DIET06] and hard to design. But this is not the only approach capable of 

naturally placing foliage. 

 
 
9.2 Density Evaluation 

 Procedural techniques discussed in previous chapters all worked on images and, therefore, also on 

heightfields. In contrast, foliage object placement requires placing individual objects, not field 

construction. However, placement of individual objects can be accomplished by sampling random 

(local) positions using a (globally defined) probability mass function. For example, creating a forest 

using such a tool would comprise of brushing the global outline of the forest into the probability 

field. Then, the probability distribution field is used to take random samples which are then 

interpreted as positions of individual foliage objects [LANE02]. By interpreting a procedural field not 

as a heightfield but as a probability function, a link to the earlier procedural algorithms is 

established. Interpreted as a field, the discussion in Section 8.2 on procedurally selected ground 

coverage types is directly applicable. For example, geological properties (e.g. local height and slope) 

can be used as influences on such a ‘probability field’. Furthermore, it can be blended with an 

independent, procedurally generated field to introduce variance. Also, the discussions and 

suggestions on custom manipulation in Section 7.2 are directly applicable. For example, a designer 

could brush probabilities, either directly on the procedurally generated result, or indirectly through 

the use of a layered representation. In the layered representation, a separately kept density field (i.e. 

a layer) could be combined with the procedural result when required during sampling, while 

offering a clean separation between custom and procedural placement influences. 

 

To efficiently calculate a position (X, Y) to place a piece of foliage at using a density field, a discrete 

2D joint mass density field P, which is essentially a matrix, can be sampled as follows: 

 

1. Calculate the marginal probability Px(x ≤ X) from P(x, y) for each column X in the matrix P 

2. Generate a uniformly distributed random number rx∈ [0,1] and find X such that Px(x ≤ X) is 

closest to rx  

3. Calculate the conditional probability function P(y ≤ Y | X). Note that Y denotes a row of P 

4. Generate a uniformly distributed random number ry∈ [0,1] and find Y such that P(y ≤ Y | X) is 

closest to ry 

 

 Note that these X and Y components form an integer coordinate in the horizontal plane. This 

algorithm can easily be adapted to interpolate between the two Xs and Ys closest to rx and ry, 

respectively, to calculate a continuous position instead of integer indices. And, of course, this two-

dimensional coordinate in the horizontal plane can be transformed into a three-dimensional world 

coordinate by adding a vertical component, looked up from the heightfield. 

 



Interactively synthesizing and editing virtual outdoor terrain  -  G.J.P. de Carpentier, 2007 61 

 Another technique to sample P(x, y) is called dithering. Although normally used to reduce the 

repetitive error of quantized digital signals, a standard (Floyd-Steinberg) dither technique can also 

be used to create a pattern of zeros and ones from P [LANE02]. Then, all ones would indicate that an 

object should be placed there. This algorithm traverses P in raster scan order and propagates any 

quantization error among its neighbors that are not yet processed, using a fixed set of quantization 

error distribution weights. As P is effectively transformed to a binary matrix, the positions of the 

objects (i.e. the indices of all 1s in the binary matrix) are all integers. Additional small random 

perturbations can be used to makes these positions continuous. 

 Some of the object positions calculated using one of the two algorithms presented above might 

lie much closer to each other than others. However, natural foliage growth is dependent on 

sufficient amounts of sun, water and nourishment, preferring a more even distribution. 

Consequently, spreading the positions of foliage objects more evenly might improve the realism of 

intended result (e.g. a forest). As suggested in [DEUS98], this might be achieved by iteratively 

moving each calculated position slightly towards the center of its Voronoi polygon. 

 

 

 9.3 Density Evaluation Extended 

 The disadvantages of both L-systems and the density evaluation method as described in the 

previous sections are similar to those of the techniques discussed in Chapter 4. The procedural 

result can be recalculated using other parameters and can even be influenced locally for L-systems 

and density evaluation by changing the context sensitive functions or brushing changes to a 

probability mass function, respectively. However, making local manual modifications to the 

positions of (some of) the individual foliage objects would have its difficulties. Although changing 

foliage object locations after a procedural algorithm has finished might be possible, any subsequent 

calls of the procedural algorithm will recalculate all positions and thus completely override these 

manual changes. Another disadvantage of these techniques is the difficulty of specifying more 

complex ecological dependencies and constraints between foliage objects.  

 

 A workaround for this would be to use two separate and independent layers of foliage objects, 

similar to the layered texturing approach discussed in Section 8.2. Foliage could be defined 

procedurally in one (bottom) layer, while the other (top) layer would contain all foliage objects that 

are placed manually by the designer. Obviously, this still wouldn’t solve the problem of manually 

editing foliage placed by the procedural algorithms directly. However, the probability function used 

for the procedural placement can locally be brushed to zero probability for the density evaluation 

approach in order to clear all procedural foliage objects in a certain area after recalculation. 

Likewise, the context sensitive L-systems functions could be adapted to leave a designated area 

clear from foliage when (re)evaluated. Then, this area could be filled with manually placed objects, 

offering the maximum of control to the designer. 
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 Another, more elegant, solution to this problem is presented in [LANE02] by extending the 

probability density approach. Just like the original probability density approach it uses a joint 

probability mass field that can be procedurally determined and influenced through custom 

brushing. However, instead of an initial phase of (influenced) density field calculation, followed by 

the calculation of all foliage object positions, the density field is influenced by all already placed 

foliage and updated for each new object. In effect, foliage objects are placed one by one, each 

influencing the probability distribution used for the next random sample taken. This way, the 

procedural algorithm can be used to add new objects to an already (partially) filled terrain where 

desired, not requiring a complete recalculation of the positions of all placed objects. Consequently, 

manually placed objects can safely and transparently be mixed with procedurally placed objects 

and can be edited afterwards on the individual object level where desired.  

 

 Also, brushing to affect the density function can be replaced by or complemented with direct 

object ‘brushing’, where only objects inside the current area under the brush tool will be affected. 

Different tool settings could result in adding, deleting or replacing these objects on request at a 

given change speed (instant or some number of objects per second). The brush tool could, for 

example, also be complemented with earlier discussed constraints like allowable height and slope 

steepness ranges. Again, feathering and noise perturbation could help to make transitions between 

different (constrained) areas more natural. 

 

 This extension allows (and needs) the probability mass field to be influenced by each of the 

individual foliage objects. For this, a 2D modification kernel is applied for each object to modify the 

density field. Because the density field represents a joint probability mass function, the sum of all 

elements should be kept normalized to 1 before and after each update. In nature, one is likely to 

observe local clusters of a specific plant species. See Figure 9.1. This is partly the result of species-

specific topographic preference (e.g. soil, groundwater level, height, slope steepness and direction). 

This effect could already be achieved by letting local values of the terrain elevation and slope 

steepness influence the procedural density field. Alternatively, this could be achieved by setting 

direct constraints (e.g. height and slope ranges) on a foliage ‘painting’ brush. Another factor in 

typical vegetation clustering is the way many species of plants reproduce. For example, some plant 

species drop seeds that are likely to fall near their parent plants, while other species propagate by 

runners. This ecological effect can be simulated by choosing a suitable shape for the kernel when an 

object is placed. See Figure 9.2 and 9.3. The third and fourth kernel in Figure 9.2 will have a 

prohibitive (negative) influence on the density function at very close range. However, a promotional 

(positive) influence is added to the density function at an ideal distance for child plants. By scaling 

the radius and amplitude of these kernels, the preference of the plant species can be modified. 
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FIGURE 9.1   Random (left) and ecologically motivated (right) placing of trees. From [LANE02] 

 

 

 

 

FIGURE 9.2   Four different types of kernels. Kernel effects from left to 
right: prohibit close placement, random, weak and strong clustering 

preference. From [LANE02] 

FIGURE 9.3   Tree placement and its probability density function. The 
kernel used promotes clustering at an ideal distance. From 

[LANE02] 

 

 The above only considers ecological placement of one type of plant species (i.e. foliage object 

families). When different types of foliage need to be placed in the same area, this idea can be 

extended naturally to create a density function for each type of foliage used and apply a different 

kernel for each species-species pair to model interdependencies between species. See Figure 9.4. 

Note the local interspecies’ prohibitive kernel and intraspecies’ clustering kernel. 

 

 

 
FIGURE 9.4   Dependencies among and between species modeled through the application of different kernels on a species’ density function. 

From left to right after one and six objects have been placed, respectively: resulting density function for (the lighter) species one, terrain 
containing placed tree objects for species one and two, resulting density function for (the darker) species two. From [LANE02] 

 

 

9.4 Preliminary Discussion 
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 Two different approaches have been discussed. Extended L-systems can be used to model 

reproduction, growth and death of individual objects in an ecosystem. Terrain, intraspecies and 

interspecies dependencies can be modeled by incorporating these dependencies into the 

production rules. However, the resulting population is emergent from the interactions between 

these rules and can, therefore, be hard to design. The placement of foliage objects would consist of 

calculating a produced string and then calculating all object positions from this string at once. 

Integrating feedback of manually or procedurally placed foliage at an earlier stage into the 

calculation of new positions is therefore complex and difficult to support. The second approach has 

the same problem in its basic density evaluation form. However, when extended with a feedback 

loop by making subsequent changes to the probability density field for each foliage object found or 

added, foliage can be added transparently by subsequently adding single objects into an area that 

was either initially empty or contained earlier placed objects. Ecological dependencies can be 

modeled as direct density field influences (e.g. height and slope constrains [HAMM01]) or as intra- 

and interspecies kernel pairs [LANE02]. Brushing foliage only inside a certain brush region is easily 

supported by making all probabilities of the density function zero for all areas outside the area 

currently covered by the brush. In fact, the density function only needs to be evaluated for the area 

currently covered by the brush, saving significant calculation time. Consequently, the designer will 

be able to brush foliage at interactively speeds. Also, growth of stronger individuals and death of 

weaker individual plants can easily be simulated by scaling up individual plants inside the brush-

covered area and by removing individuals that are overpowered (e.g. standing too much in the 

shade of larger individuals) [BENE02a]. 

  

 This chapter has been concerned with the procedural placement of foliage. The scale and rotation 

of the foliage objects has not been covered explicitly. It is expected that taking simple random 

samples for these two properties using a user selectable distribution would suffice. These 

distribution settings could be offered to the designer as customizable brush properties, stored as 

presets or sampled from a selected area. As stated in the introduction of this chapter, other types of 

natural objects that can be found on terrain (e.g. rocks) often have less complex intra- and 

interdependencies and, consequently, can be placed with a foliage placing tool with many 

ecological dependencies disabled.  
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10 Current Applications 
 The three major topics covered in this report have been heightfield synthesis and editing, terrain 

texture assignment and foliage placement. In this chapter, a few different applications that are 

currently available to designers are shortly reviewed for their support in these areas. This is by no 

means a complete list of available software. But it does give the reader an idea of the types of 

applications that are currently available for these purposes, including their typical merits and 

drawbacks. 

 

 

Terragen (PlanetSide) http://www.planetside.co.uk 

 

 Terragen offers a non-real-time heightfield landscape synthesis and rendering system. Its built-in 

ray tracer is capable of creating very realistic images, including realistic lighting, atmospheric 

effects, clouds, water reflection and terrain shadowing. Local terrain editing is not supported. So 

heightfields are either created externally and imported or are completely procedurally synthesized. 

Heightfield synthesis includes noise synthesis, range mapping and erosion, provided to the user as a 

limited set of parameterized selectable options. Texturing is supported through texture splatting 

and is completely procedurally assigned, similarly to the hierarchical representation discussed in 

Section 8.2. Local texture editing is not supported. Vegetation or other objects are also not 

supported. The created heightfields and global textures can be exported to be used in other 

applications (e.g. a game engine or generic 3D editing application capable of placing and rendering 

objects). Although the heightfields synthesized with Terragen look good, the number of different 

types of natural terrain that can be created with it is somewhat limited. 

 

 

World Machine (Stephen Schmitt) http://www.world-machine.com 

 

 Like Terragen, World Machine is a heightfield synthesis application. However, its main focus is 

flexibility to create these terrains. Simple real-time 2D and 3D rendering is supported, but this 

feature is by far not as impressive as Terragen’s (non-real-time) renderer. The user can design terrain 

by placing and connecting heightfield creation, blending and transformation nodes in a flow graph, 

supporting many synthesis techniques discussed in this report. The image on the cover and many 

other images in this report have been made with World Machine, indicating its flexibility. A height-

based texturing color scheme can be chosen from a limited number of presets. Foliage is not 

supported. Local editing (e.g. brushing) is also not possible. However, the node-based 

representation does support (imported or procedurally generated) masks to where procedural 

modifications should be limited to. Created heightfields can be exported to different formats. 

Proficient users are able to create various types of natural landscapes with it, but it generally 

requires much experience and tweaking to do so. 
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Terragen 2 (PlanetSide) http://www.planetside.co.uk 

 

 This new version of Terragen is currently still under development. Like the first Terragen, 

procedural synthesis and rendering are its main focus. Terragen 2 will be extended to allow 

overhangs. Automatic placement of imported rocks and vegetative models is supported. Foliage 

placement, texturing, heightfield synthesis and rendering options are represented in a powerful 

flow-graph system, allowing the user to couple function nodes as desired. Like World Machine, local 

editing is not supported but can be approximated through the use of node masks. Currently, only a 

technology preview application is available. Due to the flexibility of this system, synthesis and 

rendering are relatively slow, although this might be improved in the release version. The actual 

release date has not yet been announced.  

 

 

CryENGINE Sandbox 1 & 2 (Crytek) http://www.crytek.com 

 

 Official WYSIWYG level editors for the Crytek game engines, used for Farcry and the upcoming 

Crysis game. It offers an impressive set of tools to aid the level designer. It allows heightfield loading 

and simple procedural generation, Local editing is supported through the use of brushes. However, 

only the simple brushes discussed in Section 7.1 are available. Hence, no terrain blending tools are 

offered. Extensive terrain texturing is supported, similar to the layered representation discussed in 

Section 8.2, including choosing between X, Y and Z projections. Textures can be assigned both 

manually and procedurally but use the same set of materials. Hence, reapplying a procedural 

texture assignment at a later stage would overwrite all custom texture modifications. Foliage 

brushes are well supported, allowing both manual and procedural placement of (imported) 

individual foliage objects. Sandbox 2 has more advanced features in texturing and placing foliage 

than the original Sandbox. Both versions offer an easy and intuitive user interface. 

  

 

UnrealEd 3 (Epic) http://www.unrealtechnology.com 

 

 Official WYSIWYG level editor for the Unreal Engine 3 game engine and used for Gears of War. Fully 

integrated level design tool that supports heightfield importing, but offers no form of heightfield 

synthesis itself. Editing of heightfield is only supported through the basic editing brushes discussed 

in Section 7.1. Heightfield blending is not supported at all. Texturing splatting is supported through 

the layered representation and allows a separation of procedurally assigned (base) layers and 

(overriding) custom layers that can be brushed manually. Procedural foliage placement is (currently) 

not supported. The user interface of the editor is somewhat hard to use efficiently as it constantly 

requires manual settings to be set. 
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 From this summary of typical tools, it is clear that there is much potential for improvement.  

Although some game level editors offer some form of procedural heightfield synthesis, the tools 

available to designers can roughly be divided into two categories:  

 

- Low-level level editing applications, supporting simple terrain editing tools, while offering 

little or no support for procedural techniques. 

 

- Procedural landscape generators, capable of synthesizing and previewing terrain to create 

new images or export resulting heightfields for further use in other applications. These 

applications generally offer no tools at all to edit terrain locally.  
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11 Conclusions 
 This report gives an overview of techniques found in literature and in practice concerning 

synthesizing and editing virtual outdoor terrain. After an introduction into the field was given, the 

growing problem of the labor intensity of manually designing outdoor environments was 

described, focused specifically on computer games. A short overview was given of the applications 

that are typically available to today’s designers, demonstrating the currently limited and 

fragmented support in the area of efficient terrain design. This report has covered three different 

areas of terrain design in depth: 

 

- Heightfields. Different procedural heightfield synthesis algorithms, synthesis by example 

algorithms and heightfield editing tools were discussed in Chapter 4 through 7.  

 

- Texturing. Different representations of terrain texturing, manual editing techniques and 

procedural texture assignment techniques were covered in Chapter 8.  

 

- Foliage. Different ways of efficiently and realistically adding foliage to terrain, by manually 

and/or procedurally placing foliage objects, are discussed in Chapter 9.  

 

 As both novice and advanced level designers would agree, today’s level design tools have many 

shortcomings. One area of improvement would be the integration of different tools into one 

coherent and intuitive interface. In contrast, current applications as a whole do cover the larger part 

of the algorithms, techniques and tools discussed in this report, but seldom offer a substantial 

subset of the covered topics within one application. To maximize the efficiency of a designer’s 

workflow, a broad range of intuitive and consistent tools should be offered within a single 

framework. 

 

 As the design process of terrain is a creative art that often requires many iterations to be made, it is 

essential to support this paradigm and provide tools that preferably work at interactive or even real-

time rates. For simple, data-intensive tasks, the graphics processing unit (GPU) of today’s PCs can be 

used to quickly process vast amounts of data. When tool calculations are (partly) transferred from 

the CPU to the GPU, a speedup of somewhere between a half and almost two magnitudes is 

expected, depending on the task at hand. Furthermore, many alternative approaches for potential 

tools are surveyed in this report. This allows the implementation of tools to be chosen based on the 

tradeoffs between accuracy, complexity, scalability and speed of the different approaches. The 

preliminary discussions throughout this report offer practical insights and comparisons for each of 

the covered topics, respectively. 

 

 As this report shows, ideas and techniques from other fields could be reused and integrated into a 

user-friendly interface to provide the user with more powerful tools of proven quality. For example, 

techniques described in the chapters on heightfields by example and heightfield blending (Chapter 
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6 and 7) were originally introduced and used for image manipulation. Powerful interactive blending 

tools are expected to aid designers in reusing procedural techniques in later stages of partial 

redesign, iterative design or simply in the process of tweaking. Thus, heightfield design would 

greatly benefit from these techniques, yet no serious application exists that incorporates these 

features.  

 

 Tool flexibility is another area that could be improved. For example, global erosion and domain 

perturbation have been part of many procedural generation applications as a step in the global 

generation procedure, yet these techniques have never been offered as editing tools. When these 

techniques would also be offered as brushes, they would efficiently aid the designer in the task of 

creating custom, natural-looking areas. Also, tools could be applied only to one of a multitude of 

layers or nodes as another means to increase the flexibility of the workflow and speed up the 

process of experimentation and tweaking. When the designer is allowed to subdivide different 

areas, stages, experiments or detail levels into separable layers or nodes, these layers or nodes could 

be reedited separately and recombined on the fly. Furthermore, when the recombination feature 

supports complex operations (e.g. perturbation using a second input field or multi-resolution 

blending two heightfields) to be chosen by the user, a new and powerful range of editing 

possibilities becomes available. 

 

 Offering both local editing tools and more global generation tools to design heightfields enables 

the designer to choose the level of control that is most appropriate for the current task. Using global 

procedural tools provide a quick way to create landscapes with little effort that look very natural. On 

the other hand, local editing tools require more effort from the designer but offer the fine control 

that is needed to locally tweak an area. These different levels of editing are highly complementary 

and support the designer at different terrain scales and editing tasks. This is true for heightfield 

editing, but also for terrain texturing and foliage placement. The discussed terrain texturing and 

foliage placement techniques potentially offer a high-level, global procedural assignment of ground 

coverage and vegetation that can be tweaked at a medium level of control through the use of 

influencing brushes or at the maximum amount of control through local editing, all working 

interchangeably while considering geometrical and ecological constraints. 

 

 In short, natural terrain creation is a field that still offers much potential for improvement. Even 

though the game industry is rapidly evolving and otherwise uses cutting-edge technology, the 

tools that are available for terrain editing only improve at a relatively slow pace. This report has 

exposed many of the problems with these tools, but more importantly, it has provided valuable 

insights on how to potentially improve these tools in order to aid the level designer in new and 

promising ways.  
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