

BEHAVIORAL ASSUMPTION-BASED PREDICTION
FOR HIGH-LATENCY HIDING IN MOBILE GAMES

Giliam J.P. de Carpentier and Rafael Bidarra

Computer Graphics and CAD/CAM Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4

2628 CD Delft, The Netherlands
(G.J.P.deCarpentier/R.Bidarra)@ewi.tudelft.nl

http://graphics.tudelft.nl

KEYWORDS

High-latency hiding, Dead Reckoning, Prediction
algorithms, Mobile games

ABSTRACT

While the popularity of mobile games increases
with advances in processing power of mobile
devices, multi-player games in fast-paced genres
using the communication capabilities of these
mobile devices are still rare, mostly because of the
significant round trip times of the current mobile
networks. Effective latency hiding techniques exist
for LAN and even for WAN connection speeds,
but these techniques fail in the domain of mobile
networks, as the latencies can be up to 2
magnitudes larger than a typical WAN
configuration. This paper introduces a new high-
latency hiding paradigm based on behavioral
assumptions, designed to be suitable for racing
titles. Although these assumptions limit the
accuracy of predicting unexpected behavior, they
allow for significant improvements in hiding
network latency, making it possible to create a
real-time multi-player race game using today’s
GPRS network.

INTRODUCTION

The widely-spread support for J2ME, Brew and
other mobile languages created and adopted by
phone manufacturers opened up the platform to
third party software developers. This allows the
creation of ever more complex games as the

hardware capabilities and speed continue to
increase. Because the hardware inherently supports
wireless communications, games could make use of
these by including multi-player capabilities [1].
Depending on their genre, some games pose more
severe requirements than others on both the
connection speed and the round trip time. For
example, chess and other multi-player puzzle
games are typically less demanding on network
capabilities, posing no stringent requirements
regarding round trip times. On the other hand,
first-person shooters and racing games require
more bandwidth and lower round trip times for a
prompt feedback and, ultimately, for the sake of
the game-play. Sadly, although there is some
human tolerance for delay, the average round trip
times in current GPRS mobile networks is far
above this tolerance level.

Many multi-player PC/console games, played
across moderately fast networks, are able to use
common prediction techniques for anticipating the
location of other players. However, when using
high-latency mobile phone networks, more
advanced techniques are required, in order to hide
the effect of such high round trip times. This paper
presents several improvements on the Dead
Reckoning technique [2], culminating on so-called
3-way interpolated Dead Reckoning, which copes
with high latencies by sensibly simplifying the
domain using behavioral assumptions, effectively
limiting the degrees of freedom where this is less
critical.

PROBLEM DESCRIPTION

Among all game genres, race games are a very
typical and popular genre. When multi-player races
are played using PCs or game consoles across a
local-area network, the high processing power and
the network speed available make it possible for all
player’s clients to quite accurately predict and
visualize the respective cars on their displays. In
such a setting, uncertainties in the order of a tenth
of a second are neither critical nor very perceptible
when implemented using common prediction
techniques.

The main reason that makes such prediction
techniques impractical in a multi-player race
through a mobile network is the round-trip time,
i.e. the time between the moment one player, say,
turns left and the moment the other players receive
that move through the network, which is in the
range 2-3 seconds (at least, in the current Dutch
GPRS network). In practical terms, this means that
during a racing game, by the time a player receives
a sent location of some competitor, the latter is
already considerably further on. The effects of
latency on a car race game played through
broadband Internet or through a mobile network
can better be expressed by a position uncertainty of
one car length or of one football field, respectively.
As it is the prediction’s task to predict the position
within this uncertainty, the latter situation is simply
unacceptable as inevitable prediction errors become
too large to mask in a visually plausible way using
more standard prediction algorithms [3].

Standard Dead Reckoning prediction
implementations, for example, consist of
extrapolating the course of a competitor over a
period of time based on its last known 2D or 3D
position and speed. Applied to a mobile car race
setting with the high latencies mentioned above,
this delivers rather poor results and output: cars
overshoot at track curves and, upon arrival of new
position and speed data, the prediction algorithm
needs to compensate for huge errors, resulting in
rather unnatural behavior. As a consequence of this
time scale, it is of little use attempting to apply any
jump masking or filtering algorithm to standard
Dead Reckoning.

BEHAVIORAL ASSUMPTIONS

In order to improve the prediction performance and
its adequacy to the mobile race setting, a number of
behavioral assumptions can be made. The most
important assumption is that the main goal of each
participant in a typical race is to reach the finish in
the shortest time possible. Although this will not be
true for every player (e.g. some players might go
for a lot of upgrades, or perhaps enjoy making nice
skid marks on the track, if the game allows this), it
does model an average player for typical race
games.

As it is best to follow the ideal track line for the
best finish time, a good prediction, to appear
convincing and natural, should assume that each
simulated car will at least attempt taking curves
following the best (or ideal) trajectory. If
afterwards (i.e. upon receiving new data) this
assumption shows to have been too optimistic, the
next estimate should be adjusted accordingly, in
order to compensate for the divergence.

But compensating for this divergence by updating
the prediction positions with the newly received
data can be in itself another difficulty. Predicting
positions of other cars in the race becomes much
more natural and plausible if the corrections
required are carried out in a smooth manner. This
often requires the prediction algorithm to find a
compromise between correctness and plausibility.
Every new corrective prediction should be
gradually applied, avoiding abrupt changes in
trajectory and/or speed, possibly at the cost of a
slightly deferred effect.

A final assumption is a direct consequence of the
time scale at hand: there is no point in attempting
to simulate or detect collisions (and similar
unpredictable fast-paced changes), because what
both 'colliding drivers' see on their displays is only
an approximated version of the reality. Therefore,
if one player collides with another player, the latter
player would not necessarily collide with the first
player too at that point in time as these local
realities do not always coincide exactly. One could
use an arbitrating server to decide whether or not
these players did or did not collide; but then again,
using today’s mobile networks, this information
would not arrive at the players’ clients before
about 2-3 seconds, i.e. long after the action could
achieve any sensible visual feedback.

IMPROVED PREDICTION TECHNIQUES

Steering and curve behavior

As highlighted above, standard Dead Reckoning
fails to properly take curves on the track, as it only
acts after a large error is detected and this
information has arrived at other clients. An
improvement to this consists of projecting the
predicted position onto the center line of the race
track. This has a positive visual effect on the global
race behavior, as the car keeps on track when
approaching a curve. Such steering, however, bears
a somewhat monotonous and unnatural
appearance. A much more convincing result is
achieved by projecting the predicted position not
onto the track center line but onto a varied
approximation of the ideal driving line.

In addition, the direction of the simulated car can
be made to steer when approaching a curve. For
this, we estimate a projected position in the near
future, in order to query the track’s ideal line
direction ahead of the current position. This
direction, together with the current orientation of
the simulated car, is processed by a proportional-
integral-derivative (PID) controller [4]. As a result,
the car exhibits a more realistic steering behavior,
instead of strictly following an artificially rigid
approach to curves.

Predicting position and speed

A possible implementation of standard Dead
Reckoning would consist of interpolating from the
current predicted position to a new prediction
based on more recent received position data by
means of a spline curve. This curve would
interpolate over time to a predicted position in the
near future, using this time to mask prediction
errors. Combining this correction with other
factors, like (over-)steering effects to follow the
track line, could prove difficult to carry out
correctly, while irregular update arrival periods
only adds to the problem. A second drawback of
the spline fitting procedure is its computational
burden on the (limited) mobile platforms.
Depending on the complexity of the (pseudo-)
physics model used, the algorithms described
below can outperform the spline fitting procedure
while eliminating much of the problems with
combining the prediction with other effects.

Two-way interpolated Dead Reckoning can bring
up an improvement in prediction quality. It consists
of running two simulations in parallel, computing
the actual predicted position by cross-fading
between the results of two simulations: one
simulation, (a), based on the most recent data
received (instant tn), and the other, simulation, (b),
based on the data received previously to the most
recent (instant tn-1). The data received and
processed by these simulations consists of the last-
known position and speed of the car that needs to
be predicted and is converted (i.e. projected) to 1D
variables used as parameters to a parametric
representation of the track’s ideal racing line. The
actual predicted position output linearly combines
the results of the two simulations by cross-fading
from the older simulation (b) to the newest
simulation (a) over a fixed period of time, typically
the average of the update frequency. This
parametric position is mapped back to a 2D
representation using again the parametric
representation of the racing line. Initially, the
weight of simulation (b) is 100% and the weight of
simulation (a) 0%; throughout the period, these
weights are progressively reversed, so that at the
end of the period, simulation (a) predominates.

As soon as new data is received, no matter if that
happens before or after the weight of simulation (a)
has reached 100%, simulation (b) is replaced by a
weighed average between the previous simulation
(b) and simulation (a) using their current relative
weight ratio. Then, simulation (a) is initialized
using the new data and resets the weight for
simulation (a) to 0% and for (b) to 100%. As a
result of this mix between old and new data, abrupt
changes are avoided in the predicted trajectory and
speed. The main drawback of this approach is that
the linear combination of the two simulation
outcomes can be visually perceptible, turning out
to be somewhat unnatural.

The best prediction results were achieved by using
a three-way interpolated Dead Reckoning
technique, which extends the two-way technique
described above in two aspects. First, it performs
three simultaneous simulations, one with the most
recent data (instant tn), and two others based on
the data received previously (on instants tn-1 and tn-

2). In this way, the time span of influence of past
received data on the prediction is doubled, which

has a rather positive effect on the smoothness of
the simulation process.

The weights of the three simulated courses still
sum up to 100% at all times, wherein the weight of
the oldest simulation is linearly decreased over time
(i.e. it fades out), and the weights of the other two
simulations, started on successive instants, increase
(with half this rate); see Figure 1. Rotating the role
of these three simulations is done upon arrival of
new data (at instant tn), such that the oldest
simulation (tn-3) of the three is always merged by a
linear combination (i.e. weighed average) with the
second-oldest simulation (tn-2) using their relative
weights, the result becoming the new oldest
simulation (tn-2). This simulation gets a new weight
that is the sum of the two weights that this
simulation is combined from. The previously
newest simulation (tn-1) and its weight remain
unchanged, and it becomes the second-newest
simulation in the new situation. The previously
oldest simulation of the three (tn-3) is reinitialized
with the new data to become newest simulation (tn)
with an assigned weight of 0%. One last restriction
is enforced on the newest and second newest
simulation by disallowing a weight contribution of
more than 50% each. Although still linear, using 3
simulations somewhat masks the linearity, making
the effects much less noticeable. Also, prediction
errors are resolved much smoother as the newest
data is less dominating. This comes at a cost of
slightly larger prediction errors when compared to
more direct two-way algorithms, but allows for a

much more natural car behavior, as each of the
simulations is still based on car (pseudo-)physics,
while it is between these separate simulations that
the interpolation is performed.

A second improvement that can be combined with
either of the other proposed techniques consists of
making use of the player’s divergence from
projection on the ideal racing line. This distance,
between the actual last known position and its
projection on the ideal race line, can be used to
estimate the extra time required to drive back to
the ideal line, adding a small time penalty to the
appropriate simulation by temporarily slowing it
down. This allows handling situations more
accurately where a competitor (either willingly or
unwillingly) actually diverts from the assumed
route, e.g. going off the road.

RESULTS

To develop and test the above ideas, a testbed
application was implemented, supporting the
comparison of different prediction algorithms in
real-time. Simulating a simple racing game, the
tester controlled one black ‘car’. All other cars in
the simulation used different prediction algorithms
and were fed identical positional data of the tester’s
car, after this data had been delayed by a simulated
mobile network with limited bandwidth, large
latencies and typical rates for TCP/IP resends after
packet-loss. Each non-black car implemented a
different algorithm for predicting the current
position and speed of the tester’s car, therefore

Figure 1. Combined simulation weights for three-way interpolated Dead Reckoning

allowing their results to be compared. Typical
results are shown in Figures 2 and 3, where the red
car represents the use of a standard Dead
Reckoning (2-D DR) algorithm, and the magenta
and cyan car represent the proposed projected two-
way and three-way algorithms, respectively. The
black closed loop represents an ideal driving line
used for projection. In Figure 2, the tester’s
objective was to race as fast as possible, a typical
race game goal. Here the standard 2-D DR
algorithm produces poor results compared to the
proposed two-way and three-way algorithms, as it
drove the simulated car mostly off-track. The
average error for the two-way algorithm was
slightly smaller than that for the three-way
algorithm. However, the three-way algorithm
produced smoother error correction if the tester
behaved unexpectedly.

For Figure 3, the tester deliberately drove the car
off track, consequently slowing it down. In these
condition, the 2-D DR algorithm still produced a
poor result (Although in this particular image the
red car is quite near the black tester’s car).
However, the proposed algorithms did not improve
the prediction results of the magenta and cyan car,
as the assumptions were not satisfied. Note that
both the two-way and three-way algorithms
overshoot the tester’s position. However, the
three-way algorithm also implemented a speed
penalty for divergence from the ideal racing line
(the last proposed improvement). Reacting to the
green car (i.e. the last known position of the
tester’s car as known to the prediction cars) being
off-track, the three-way algorithm improves the
accuracy of the prediction, as expected, when
compared to an algorithm without this
improvement (in this case, the two-way magenta
car).

CONCLUSIONS

Conventional latency hiding techniques like Dead
Reckoning are not directly applicable to current
multi-player mobile games, due to the high latency
of the GPRS network. A new prediction technique
has been presented that copes with high latencies
by simplifying the domain using behavioral
assumptions. This technique has been implemented
for the domain of multi-player mobile race games,
and tested against common alternative techniques
in this domain. The new technique has shown to
perform rather satisfactorily, outperforming the
competing alternatives whenever typical behavioral
assumptions can be made about the specific
domain. So far, this technique has been
incorporated into one commercial multi-player race

Figure 2. Testbed comparison of different prediction

algorithms in on-track conditions

Figure 3. Testbed comparison of different prediction

algorithms in off-track conditions

Figure 4. Scene of the implemented multi-player

mobile racing game

title for the mobile platform called Razor, by Ex
Machina, running on the GPRS network; see
Figure 4 for a scene taken during its development.

REFERENCES

[1] Hannay, E. "High Latency Mobile Multiplayer
Gaming".
http://www.lancs.ac.uk/ug/hannay/proposal.pdf

[2] Laramée, F.D. "Dead Reckoning in Sports and
Strategy Games". In: AI Game Programming
Wisdom 2, Charles River Media, p. 499-504

[3] Pantel, L and Wolf, L.C. "On the Suitability of
Dead Reckoning Schemes for Games".
http://www.ibr.cs.tu-bs.de/events/netgames2002/
presentations/wolf.pdf

[4] Forrester, E. "Intelligent Steering Using PID
Controllers'. In: AI Game Programming Wisdom 2,
Charles River Media, p. 171-178

BIOGRAPHY

Giliam J.P. de Carpentier is
a MSc computer science
student at the Faculty of
Electrical Engineering,
Mathematics and Computer
Science of Delft University of
Technology, The Netherlands.
He worked on this project

within his BSc graduation, at the Computer
Graphics and CAD/CAM Group of Delft
University of Technology.

Rafael Bidarra is assistant
professor Geometric Modelling
at the Faculty of Electrical
Engineering, Mathematics and
Computer Science of Delft
University of Technology, The
Netherlands. He graduated in
electronics engineering at the

University of Coimbra, Portugal, in 1987, and
received his PhD in computer science from Delft
University of Technology in 1999. He teaches
several courses on computer games within the CS
programme 'Media and Knowledge Engineering',
and leads the research work on computer games at
the Computer Graphics and CAD/CAM Group.
His current research interests in this area include
procedural and parametric modelling, and
advanced techniques for animation and path
finding. He has published many papers in
international journals, books and conference
proceedings, and has served as member of several
program committees.

