BEHAVIORAL ASSUMPTION-BASED PREDICTION FOR HIGH-LATENCY HIDING IN MOBILE GAMES

Giliam J.P. de Carpentier Rafael Bidarra

Computer Graphics and CAD/CAM Group

Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science

The problem

- Multi-player games
 - Fast-paced racing
- Network connections

Latency

The problem

- Multi-player games
 Fast-paced racing
- Network connections

Latency

 $T = t_1$: Transmit red position

Network

 $T = t_1 + \Delta T_{latency}$: Receive position

Network

Received position red

Actual position red

A common technique

- Prediction
- Prediction errors

Dead reckoning

 $T = t_1 + \Delta T_{latency}$: Receive position

 $T = t_1$: Transmit red position

Network

Actual position red

Received position red at t₁

A common technique

- Prediction
- Prediction errors

Dead reckoning

Predicted position red

Received position red at t₁ ~

G.J.P. de Carpentier and R. Bidarra CGAMES 2005, France

 $T = t_1$: Transmit red position

Network

 $T = t_1 + \Delta T_{latency}$: Receive position

Actual position red

Network

Mobile games

- Platform: Java, BREW, Symbian, ...
- Network: GPRS using HTTP/TCP/IP stack

	LAN network (PC game)	Internet (PC game)	GPRS network (Mobile game)
Network latency	1 - 5 ms	50 - 200 ms	1500 - 3500 ms
Prediction distance in a race game @ 100 km/h	0.03 – 0.14 meter	1.4 - 5.6 meter	42 – 97 meter
Prediction error, assuming a max. of 10% deviation.	< 2 cm	< 0.6 meter	< 10 meter
Results Dead- reckoning	Good.	Medium. Interactions like collisions can be problematic.	Bad. Errors as large as the width of a track are unacceptable.

Prediction models

- Standard strategy:
 - Only extrapolate from older data
- Our approach:
 Assume track following behavior
 - Or assume racing line optimizing behavior

 \widetilde{X}_{t}

*X*_{*t*-1}

*X*_{*t*-2}

Prediction models

- Standard strategy:
 Only extrapolate from older data
- Our approach:
 - Assume track following behavior
 - Or assume racing line optimizing behavior

*X*_{*t*-1}

X_{t-2}

Continuity

- Multiple simulations
 - Running 2 or 3 realtime simulations
 - Linear interpolation between simulations
 - Round robin

simB

simA

Continuity

- Multiple simulations
 - Running 2 or 3 realtime simulations
 - Linear interpolation between simulations
 - Round robin

A Test Drive

- Creating a testbed
- Comparing results

A Test Drive

- Creating a testbed
- Comparing results
- Razor

http://www.exmachina.nl

Conclusions

- Mobile 2.5G networks: a problematic domain
- Standard dead reckoning is insufficient
- Behavioral assumptions improve prediction
- Running multiple simulations: a good fit